Conventional rapid detection methods are difficult to identify or distinguish various pesticide residues at the same time. And sensor arrays are also limited by the complexity of preparing multiple receptors and high cost. To address this challenge, a single material with multiple properties is considered. Herein, we first found that different categories of pesticides have diverse regulatory behaviors on the multiple catalytic activities of Asp-Cu nanozyme. Thus, a three-channel sensor array based on the laccase-like, peroxidase-like, and superoxide dismutase-like activities of Asp-Cu nanozyme was constructed and successfully used for the discrimination of eight kinds of pesticides (glyphosate, phosmet, isocarbophos, carbaryl, pentachloronitrobenzene, metsulfuron-methyl, etoxazole, and 2-methyl-4-chlorophenoxyacetic acid). In addition, a concentration-independent model for qualitative identification of pesticides has been established, and 100% correctness was achieved in the recognition of unknown samples. Then, the sensor array also exhibited excellent interference immunity and was reliable for real sample analysis. It provided a reference for pesticide efficient detection and food quality supervision.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2023.115458DOI Listing

Publication Analysis

Top Keywords

identification pesticides
8
concentration-independent model
8
activities asp-cu
8
asp-cu nanozyme
8
sensor array
8
novel strategy
4
strategy identification
4
pesticides
4
pesticides categories
4
categories concentration-independent
4

Similar Publications

Intramolecular distance-regulated G4 DNA enzymatic activity-based chromophotometric system for visual monitoring of diquat.

Anal Chim Acta

January 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China. Electronic address:

Background: As global food production continues to surge, the widespread use of herbicides has also increased concurrently, posing challenges like health risks and environmental pollution. Traditional detection methods for pesticide residues, such as diquat (DQ), were hampered by limitations like high expenses, lengthy detection times and complex operations, restricting their practical application in rapid clinical diagnosis.

Results: In light of the pressing necessity for the identification of minute pesticide residues and the intrinsic constraints of small molecule analysis, a novel chromophotometric biosensor targeting small molecules was developed based on bi-epitopes on single antibody to immobilize two DQ-PAL, inhibiting the hybridization of DQ-PAL.

View Article and Find Full Text PDF

How to Identify Pesticide Targets?

J Agric Food Chem

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China.

Pesticides are essential in contemporary agriculture, as they improve crop yields and quality while safeguarding against pests. However, long-term heavy use of traditional pesticides has led to increased pest resistance, while these pesticides are often toxic and less selective, and may also have adverse effects on the environment and nontarget organisms. To solve this problem, it is important to find new targets for pesticide to develop more effective and environmentally friendly alternatives.

View Article and Find Full Text PDF

Water scarcity in the Mediterranean area has increased the number of intermittent rivers. Recently, hyporheic zones (HZ) of intermittent rivers have gained attention since a substantial part of the stream's natural purification capacity is located within these zones. Thus, understanding the flow dynamics in HZs is crucial for gaining insights into the degradation of organic micropollutants.

View Article and Find Full Text PDF

The presence of excessive residues of pesticides poses a great threat to ecology and human health. Herein, a novel, low-cost, simple and precise quantification sensing platform was established for differentiating and monitoring four common pesticides in China. Particularly, the array-based ratio fluorescent sensor array detector (ARF-SAD) based on cross-reaction characteristics of porphyrins and other porphyrin derivative was successfully constructed and integrated into the platform.

View Article and Find Full Text PDF

Non-animal assessment of skin sensitization is a global trend. Recently, scientific efforts have been focused on the integration of multiple evidence for decision making with the publication of OECD Guideline No. 497 for defined approaches to skin sensitization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!