Impact of transmembrane peptides on individual lipid motions and collective dynamics of lipid bilayers.

Colloids Surf B Biointerfaces

Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan. Electronic address:

Published: August 2023

AI Article Synopsis

  • The study investigates how transmembrane peptides affect the dynamics and physical properties of lipid bilayers, which are crucial for protein function and membrane structure.
  • It was found that the inclusion of these peptides inhibits lipid molecule movement and increases the rigidity and viscosity of the membrane.
  • The results highlight the importance of lipid-protein interactions in altering the collective behavior of lipid bilayers, impacting the overall function of biological membranes.

Article Abstract

The fluid nature of lipid bilayers is indispensable for the dynamic regulation of protein function and membrane morphology in biological membranes. Membrane-spanning domains of proteins interact with surrounding lipids and alter the physical properties of lipid bilayers. However, there is no comprehensive view of the effects of transmembrane proteins on the membrane's physical properties. Here, we investigated the effects of transmembrane peptides with different flip-flop-promoting abilities on the dynamics of a lipid bilayer employing complemental fluorescence and neutron scattering techniques. The quasi-elastic neutron scattering and fluorescence experiments revealed that lateral diffusion of the lipid molecules and the acyl chain motions were inhibited by the inclusion of transmembrane peptides. The neutron spin-echo spectroscopy measurements indicated that the lipid bilayer became more rigid but more compressible and the membrane viscosity increased when the transmembrane peptides were incorporated into the membrane. These results suggest that the inclusion of rigid transmembrane structures hinders individual and collective lipid motions by slowing down lipid diffusion and increasing interleaflet coupling. The present study provides a clue for understanding how the local interactions between lipids and proteins change the collective dynamics of the lipid bilayers, and therefore, the function of biological membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2023.113396DOI Listing

Publication Analysis

Top Keywords

transmembrane peptides
16
lipid bilayers
16
dynamics lipid
12
lipid
10
lipid motions
8
collective dynamics
8
biological membranes
8
physical properties
8
effects transmembrane
8
lipid bilayer
8

Similar Publications

Small extracellular vesicles (sEVs) are nanosized vesicles. Death receptor 5 (DR5) mediates extrinsic apoptosis. We engineer DR5 agonistic single-chain variable fragment (scFv) expression on the surface of sEVs derived from natural killer cells.

View Article and Find Full Text PDF

The accumulation of defective polypeptides in cells is a major cause of various diseases. However, probing defective proteins is difficult because no currently available method can retrieve unstable defective translational products in a soluble state. To overcome this issue, there is a need for a molecular device specific to structurally defective polypeptides.

View Article and Find Full Text PDF

Chemistries on the inner leaflet of the cell membrane.

Chem Commun (Camb)

January 2025

Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.

The cell membrane, characterized by its inherent asymmetry, functions as a dynamic barrier that regulates numerous cellular activities. This Highlight aims to provide the chemistry community with a comprehensive overview of the intriguing and underexplored inner leaflet, encompassing both fundamental biology and emerging synthetic modification strategies. We begin by describing the asymmetric nature of the plasma membrane, with a focus on the distinct roles of lipids, proteins, and glycan chains, highlighting the composition and biofunctions of the inner leaflet and the biological mechanisms that sustain membrane asymmetry.

View Article and Find Full Text PDF

The 'Viroporin' family comprises a number of mostly small-sized, integral membrane proteins encoded by animal and plant viruses. Despite their sequence and structural diversity, viroporins share a common functional trend: their capacity to assemble transmembrane channels during the replication cycle of the virus. Their selectivity spectrum ranges from low-pH-activated, unidirectional proton transporters, to size-limited permeating pores allowing passive diffusion of metabolites.

View Article and Find Full Text PDF

Targeted Delivery of BMS-1166 for Enhanced Breast Cancer Immunotherapy.

Int J Nanomedicine

January 2025

College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, People's Republic of China.

Background: Cancer immunotherapy has achieved great success in breast cancer treatment in recent years. The Programmed Death-1 (PD-1) /Programmed Death-Ligand 1 (PD-L1) immune checkpoint pathway is among the most studied. BMS-1166, a PD-L1 inhibitor, can interfere with PD-1 and PD-L1 interaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!