Monolayer transition-metal dichalcogenides (ML-TMDs) have the potential to unlock novel photonic and chemical technologies if their optoelectronic properties can be understood and controlled. Yet, recent work has offered contradictory explanations for how TMD absorption spectra change with carrier concentration, fluence, and time. Here, we test our hypothesis that the large broadening and shifting of the strong band-edge features observed in optical spectra arise from the formation of negative trions. We do this by fitting an based, many-body model to our experimental electrochemical data. Our approach provides an excellent, global description of the potential-dependent linear absorption data. We further leverage our model to demonstrate that trion formation explains the nonmonotonic potential dependence of the transient absorption spectra, including through photoinduced derivative line shapes for the trion peak. Our results motivate the continued development of theoretical methods to describe cutting-edge experiments in a physically transparent way.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.3c01342DOI Listing

Publication Analysis

Top Keywords

trion formation
8
optical spectra
8
transition-metal dichalcogenides
8
absorption spectra
8
formation resolves
4
resolves observed
4
observed peak
4
peak shifts
4
shifts optical
4
spectra
4

Similar Publications

Exciton emitters in two-dimensional monolayer transition-metal dichalcogenides (TMDs) provide a boulevard for the emerging optoelectronic field, ranging from miniaturized light-emitting diodes to quantum emitters and optical communications. However, the low quantum efficiency from limited light-matter interactions and harmful substrate effects seriously hinders their applications. In this work, we achieve a ∼438-fold exciton photoluminescence enhancement by constructing a Fabry-Pérot cavity consisting of monolayer WS and a micron-scale hole on the SiO/Si substrate.

View Article and Find Full Text PDF

We present femtosecond pump-probe measurements of neutral and charged exciton optical response in monolayer MoSe to resonant photoexcitation of a given exciton state in the presence of 2D electron gas. We show that creation of charged exciton (X) population in a given K, K valley requires the capture of available free carriers in the opposite valley and reduces the interaction of neutral exciton (X) with the electron Fermi sea. We also observe spectral broadening of the X transition line with the increasing X population caused by efficient scattering and excitation induced dephasing.

View Article and Find Full Text PDF

Monolayers of transition metal dichalcogenides (TMDCs) demonstrate plenty of unique properties due to the band structure. Symmetry breaking brings second-order susceptibility to meaningful values resulting in the enhancement of corresponding nonlinear effects. Cooling the TMDC films to cryogenic temperatures leads to the emergence of two distinct photoluminescence peaks caused by the exciton and trion formation.

View Article and Find Full Text PDF

The half-filled lowest Landau level is a fascinating platform for researching interacting topological phases. A celebrated example is the composite Fermi liquid, a non-Fermi liquid formed by composite fermions in strong magnetic fields. Its zero-field counterpart is predicted in a twisted MoTe bilayer (tMoTe)-a recently discovered fractional Chern insulator exhibiting the fractional quantum anomalous Hall effect.

View Article and Find Full Text PDF

Two-dimensional semiconductors exhibit pronounced many-body effects and intense optical responses due to strong Coulombic interactions. Consequently, subtle differences in photoexcitation conditions can strongly influence how the material dissipates energy during thermalization. Here, using multiple excitation spectroscopies, we show that a distinct thermalization pathway emerges at elevated excitation energies, enhancing the formation of trions and charged biexcitons in single-layer WSe by up to 2× and 5× , respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!