Megalibraries are centimeter-scale chips containing millions of materials synthesized in parallel using scanning probe lithography. As such, they stand to accelerate how materials are discovered for applications spanning catalysis, optics, and more. However, a long-standing challenge is the availability of substrates compatible with megalibrary synthesis, which limits the structural and functional design space that can be explored. To address this challenge, thermally removable polystyrene films were developed as universal substrate coatings that decouple lithography-enabled nanoparticle synthesis from the underlying substrate chemistry, thus providing consistent lithography parameters on diverse substrates. Multi-spray inking of the scanning probe arrays with polymer solutions containing metal salts allows patterning of >56 million nanoreactors designed to vary in composition and size. These are subsequently converted to inorganic nanoparticles via reductive thermal annealing, which also removes the polystyrene to deposit the megalibrary. Megalibraries with mono-, bi-, and trimetallic materials were synthesized, and nanoparticle size was controlled between 5 and 35 nm by modulating the lithography speed. Importantly, the polystyrene coating can be used on conventional substrates like Si/SiO, as well as substrates typically more difficult to pattern on, such as glassy carbon, diamond, TiO BN, W, or SiC. Finally, high-throughput materials discovery is performed in the context of photocatalytic degradation of organic pollutants using Au-Pd-Cu nanoparticle megalibraries on TiO substrates with 2,250,000 unique composition/size combinations. The megalibrary was screened within 1 h by developing fluorescent thin-film coatings on top of the megalibrary as proxies for catalytic turnover, revealing AuPdCu-TiO as the most active photocatalyst composition.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.3c03910DOI Listing

Publication Analysis

Top Keywords

nanoparticle megalibraries
8
materials synthesized
8
scanning probe
8
substrates
5
molecular thin
4
thin films
4
films enable
4
enable synthesis
4
synthesis screening
4
nanoparticle
4

Similar Publications

Machine Learning-Enabled Image Classification for Automated Electron Microscopy.

Microsc Microanal

July 2024

Department of Electrical and Computer Engineering, McCormick School of Engineering, Northwestern University, Technological Institute, 2145 Sheridan Road, Room L359, Evanston, IL 60208, USA.

Traditionally, materials discovery has been driven more by evidence and intuition than by systematic design. However, the advent of "big data" and an exponential increase in computational power have reshaped the landscape. Today, we use simulations, artificial intelligence (AI), and machine learning (ML) to predict materials characteristics, which dramatically accelerates the discovery of novel materials.

View Article and Find Full Text PDF

Megalibraries are centimeter-scale chips containing millions of materials synthesized in parallel using scanning probe lithography. As such, they stand to accelerate how materials are discovered for applications spanning catalysis, optics, and more. However, a long-standing challenge is the availability of substrates compatible with megalibrary synthesis, which limits the structural and functional design space that can be explored.

View Article and Find Full Text PDF

Catalyst discovery through megalibraries of nanomaterials.

Proc Natl Acad Sci U S A

January 2019

Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208;

The nanomaterial landscape is so vast that a high-throughput combinatorial approach is required to understand structure-function relationships. To address this challenge, an approach for the synthesis and screening of megalibraries of unique nanoscale features (>10,000,000) with tailorable location, size, and composition has been developed. Polymer pen lithography, a parallel lithographic technique, is combined with an ink spray-coating method to create pen arrays, where each pen has a different but deliberately chosen quantity and composition of ink.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!