Himalayas and Tibetan Plateau (HTP) is important for global biodiversity and regional sustainable development. While numerous studies have revealed that the ecosystem in this unique and pristine region is changing, their exact causes are still poorly understood. Here, we present a year-round (23 March 2017 to 19 March 2018) ground- and satellite-based atmospheric observation at the Qomolangma monitoring station (QOMS, 4276 m a.s.l.). Based on a comprehensive chemical and stable isotope (N) analysis of nitrogen compounds and satellite observations, we provide unequivocal evidence that wildfire emissions in South Asia can come across the Himalayas and threaten the HTP's ecosystem. Such wildfire episodes, mostly occurring in spring (March-April), not only substantially enhanced the aerosol nitrogen concentration but also altered its composition (i.e., rendering it more bioavailable). We estimated a nitrogen deposition flux at QOMS of ∼10 kg N ha yr, which is approximately twice the lower value of the critical load range reported for the Alpine ecosystem. Such adverse impact is particularly concerning, given the anticipated increase of wildfire activities in the future under climate change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.3c01541 | DOI Listing |
Front Plant Sci
January 2025
Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
Background: The genus is endemic to China and belongs to the Apiaceae family, which is widely distributed in the Himalaya-Hengduan Mountains (HHM) region. However, its morphology, phylogeny, phylogeography, taxonomy, and evolutionary history were not investigated due to insufficient sampling and lack of population sampling and plastome data. Additionally, we found that was not similar to members but resembled species in morphology, indicating that the taxonomic position of needs to be re-evaluated.
View Article and Find Full Text PDFGenes (Basel)
November 2024
State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
(D. Don) DC. (.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
Central Department of Geology, Tribhuvan University, Kirtipur, Kathmandu, 44600, Nepal.
Freshwater ecosystems, including high-altitude lakes, can be affected by trace metal pollution derived from a mix of natural sources and anthropogenic activities. These pollutants often collect in surface sediments, with notable concentrations in the deeper areas of lakes. To evaluate the environmental risk associated with metal contaminated sediment in Rara Lake, southern Himalaya, surface sediment samples were systematically collected in November 2018, with a subsequent specific emphasis on determinations of trace element concentrations.
View Article and Find Full Text PDFCurr Pharm Des
December 2024
Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India.
Cordyceps spp. (CS), a well-known medicinal mushroom that belongs to Tibetan medicine and is predominantly found in the high altitudes in the Himalayas. CS is a rich reservoir of various bioactive substances including nucleosides, sterols flavonoids, peptides, and phenolic compounds.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
Worldwide forest fires have occurred frequently in recent years, a result of which may be the emission of so-called "legacy" organochlorine pollutants (OCPs) accumulated in forests. However, few studies have measured the emission factors (EFs) of the toxicity of the OCPs from forest fires. In this study, the EFs of vegetation burning were observed in forests along the altitudinal gradient from 1000 to 4200 m, and the EFs of ∑DDTs (dechlorodiphenylthrichloroethanes), HCB (hexachlorobenzene), ∑HCHs (hexachlorocyclohexanes), and ∑PCBs (polychlorinated biphenyls) were 2050 ± 1175, 379 ± 409, 48 ± 51, and 65 ± 59 ng/kg, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!