We developed an analysis pipeline that can extract microbial sequences from spatial transcriptomic (ST) data and assign taxonomic labels, generating a spatial microbial abundance matrix in addition to the default host expression matrix, enabling simultaneous analysis of host expression and microbial distribution. We called the pipeline spatial metatranscriptome (SMT) and applied it on both human and murine intestinal sections and validated the spatial microbial abundance information with alternative assays. Biological insights were gained from these novel data that showed host-microbe interaction at various spatial scales. Finally, we tested experimental modification that can increase microbial capture while preserving host spatial expression quality and, by use of positive controls, quantitatively showed the capture efficiency and recall of our methods. This proof-of-concept work shows the feasibility of SMT analysis and paves the way for further experimental optimization and application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10078289 | PMC |
http://dx.doi.org/10.1101/gr.277178.122 | DOI Listing |
Emerg Microbes Infect
January 2025
Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France.
Insertion sequences (IS) represent mobile genetic elements that have been shown to be associated with bacterial evolution and adaptation due to their effects on genome plasticity. In , the causative agent of whooping cough, the numerous IS elements induce genomic rearrangements and contribute to the diversity of the global population. Previously, we have shown that the majority of IS-specific endogenous promoters induce the synthesis of alternative transcripts and thereby affect the transcriptional landscape of .
View Article and Find Full Text PDFMol Breed
January 2025
Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China.
Unlabelled: Citrus canker is a devastating disease caused by subsp. (), which secretes the effector PthA4 into host plants to trigger transcription of the susceptibility gene , resulting in pustule formation. However, the molecular mechanism underlying CsLOB1-mediated susceptibility to remains elusive.
View Article and Find Full Text PDFSheng Li Xue Bao
December 2024
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
The objective of the present study was to investigate the role and mechanism of bone marrow microenvironmental cells in regulating the mitochondrial mass of leukemia cells, and to uncover the mechanism of leukemia progression at the metabolic level. A mouse model of acute myeloid leukemia (AML) induced by the overexpression of the MLL-AF9 (MA9) fusion protein was established, and the bone marrow cells of AML mice were transplanted into mitochondrial fluorescence reporter mice expressing the Dendra2 protein (mito-Dendra2 mice). The proportion of Dendra2 cells in bone marrow leukemia cells at different stages of AML was quantified by flow cytometry.
View Article and Find Full Text PDFCell Commun Signal
January 2025
School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
Background: Staphylococcus aureus, a known contributor to non-healing wounds, releases vesicles (SAVs) that influence the delicate balance of host-pathogen interactions. Efferocytosis, a process by which macrophages clear apoptotic cells, plays a key role in successful wound healing. However, the precise impact of SAVs on wound repair and efferocytosis remains unknown.
View Article and Find Full Text PDFNature
January 2025
Department of Chemistry and Chemical Biology, Boyce Thompson Institute, Cornell University, Ithaca, NY, USA.
Metabolites derived from the intestinal microbiota, including bile acids (BA), extensively modulate vertebrate physiology, including development, metabolism, immune responses and cognitive function. However, to what extent host responses balance the physiological effects of microbiota-derived metabolites remains unclear. Here, using untargeted metabolomics of mouse tissues, we identified a family of BA-methylcysteamine (BA-MCY) conjugates that are abundant in the intestine and dependent on vanin 1 (VNN1), a pantetheinase highly expressed in intestinal tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!