Intracerebral hemorrhage (ICH) has a high morbidity and mortality rate. Excessive reactive oxygen species (ROS) caused by primary and second brain injury can induce neuron death and inhibit neurological functional recovery after ICH. Therefore, exploring an effective way to noninvasively target hemorrhage sites to scavenge ROS is urgently needed. Inspired by the biological function of platelets to target injury vessel and repair injury blood vessels, platelet-membrane-modified polydopamine (Menp@PLT) nanoparticles are developed with targeting to hemorrhage sites of ICH. Results demonstrate that Menp@PLT nanoparticles can effectively achieve targeting to the location of intracranial hematoma. Furthermore, Menp@PLT with excellent anti-ROS properties can scavenge ROS and improve neuroinflammation microenvironment of ICH. In addition, Menp@PLT may play a role in decreasing hemorrhage volume by repairing injury blood vessels. Combining platelet membrane and anti-ROS nanoparticles for targeting brain hemorrhage sites provide a promising strategy for efficiently treating ICH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202300797 | DOI Listing |
Commun Biol
January 2025
Department of Medicine, Universite de Montreal, Montreal, QC, Canada.
Severe COVID-19 can trigger a cytokine storm, leading to acute respiratory distress syndrome (ARDS) with similarities to superantigen-induced toxic shock syndrome. An outstanding question is whether SARS-CoV-2 protein sequences can directly induce inflammatory responses. In this study, we identify a region in the SARS-CoV-2 S2 spike protein with sequence homology to bacterial super-antigens (termed P3).
View Article and Find Full Text PDFFront Immunol
January 2025
Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
Cells die by necrosis due to excessive chemical or thermal stress, leading to plasma membrane rupture, release of intracellular components and severe inflammation. The clearance of necrotic cell debris is crucial for tissue recovery and injury resolution, however, the underlying mechanisms are still poorly understood, especially . This study examined the role of complement proteins in promoting clearance of necrotic cell debris by leukocytes and their influence on liver regeneration.
View Article and Find Full Text PDFJACC Adv
January 2025
Department of Medicine (Division of Artificial Intelligence in Medicine), Biomedical Sciences, and Imaging, Cedars-Sinai Medical Center, Los Angeles, California, United States.
Background: Observational data have suggested that patients with moderate to severe ischemia benefit from revascularization. However, this was not confirmed in a large, randomized trial.
Objectives: Using a contemporary, multicenter registry, the authors evaluated differences in the association between quantitative ischemia, revascularization, and outcomes across important subgroups.
JTO Clin Res Rep
January 2025
Division of Hematology & Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
Introduction: Osimertinib is now a standard first-line (1L) therapy for EGFR-mutated (EGFRm) advanced NSCLC. We aimed to characterize patterns of therapy and longitudinal risk of brain and liver metastasis in a cohort of EGFRm NSCLC.
Methods: Patients with metastatic EGFRm NSCLC who received 1L systemic therapy at sites within the Academic Thoracic Medical Investigator's Consortium were included; demographic and clinical data including treatment patterns were described.
Lancet Haematol
January 2025
University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Background: In CARTITUDE-4, ciltacabtagene autoleucel (cilta-cel) significantly improved progression-free survival (primary endpoint; previously reported) versus standard of care in patients with relapsed, lenalidomide-refractory multiple myeloma. We report here patient-reported outcomes.
Methods: In the ongoing, phase 3, open-label CARTITUDE-4 study, patients were recruited from 81 sites in the USA, Europe, Asia, and Australia, and were randomly assigned 1:1 to cilta-cel (target, 0·75 × 10 CAR-T cells/kg) or standard of care (daratumumab, pomalidomide, and dexamethasone; pomalidomide, bortezomib, and dexamethasone).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!