E3 ubiquitin ligase genes play important roles in the regulation of plant development. They have been well studied in plants, but have not been sufficiently investigated in wheat. Here, we identified a highly expressed RING finger E3 ubiquitin ligase gene TaAIRP2-1B (ABA-insensitive RING protein 2) in wheat spike. Sequence polymorphism and association analysis showed that TaAIRP2-1B is significantly associated with spike length under various conditions. The genotype with haplotype Hap-1B-1 of TaAIRP2-1B has a longer spike than that of Hap-1B-2, and was positively selected in the process of wheat breeding in China. Moreover, the TaAIRP2-1B-overexpressing rice lines have longer panicles compared with wild-type plants. The expression levels of TaAIRP2-1B in Hap-1B-1 accessions were higher than in Hap-1B-2 accessions. Further study revealed that the expression of TaAIRP2-1B was negatively regulated by TaERF3 (ethylene-responsive factor 3) via binding to the Hap-1B-2 promoter, but not via binding of Hap-1B-1. Additionally, several candidate genes interacting with TaAIRP2-1B were obtained by screening the cDNA library of wheat in yeast cells. It was found that TaAIRP2-1B interacted with TaHIPP3 (heavy metal-associated isoprenylated protein 3) and promoted TaHIPP3 degradation. Our study demonstrates that TaAIRP2-1B controls spike length, and the haplotype Hap-1B-1 of TaAIRP2-1B is a favorable natural variation for spike length enhancement in wheat. This work also provides genetic resources and functional markers for wheat molecular breeding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/erad226 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!