A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improving Inconspicuous Attributes Modeling for Person Search by Language. | LitMetric

Person search by language aims to retrieve the interested pedestrian images based on natural language sentences. Although great efforts have been made to address the cross-modal heterogeneity, most of the current solutions suffer from only capturing salient attributes while ignoring inconspicuous ones, being weak in distinguishing very similar pedestrians. In this work, we propose the Adaptive Salient Attribute Mask Network (ASAMN) to adaptively mask the salient attributes for cross-modal alignments, and therefore induce the model to simultaneously focus on inconspicuous attributes. Specifically, we consider the uni-modal and cross-modal relations for masking salient attributes in the Uni-modal Salient Attribute Mask (USAM) and Cross-modal Salient Attribute Mask (CSAM) modules, respectively. Then the Attribute Modeling Balance (AMB) module is presented to randomly select a proportion of masked features for cross-modal alignments, ensuring the balance of modeling capacity of both salient attributes and inconspicuous ones. Extensive experiments and analyses have been carried out to validate the effectiveness and generalization capacity of our proposed ASAMN method, and we have obtained the state-of-the-art retrieval performance on the widely-used CUHK-PEDES and ICFG-PEDES benchmarks.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2023.3285426DOI Listing

Publication Analysis

Top Keywords

salient attributes
16
salient attribute
12
attribute mask
12
inconspicuous attributes
8
person search
8
search language
8
cross-modal alignments
8
salient
7
attributes
6
cross-modal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!