The effect of alterations in cell surface carbohydrates on invasion of mouse and rat cells into embryonic chick heart fragments in organ culture was studied. Matching pairs of malignant and nonmalignant cells, including all categories of carcinogenic induction (i.e., viral, chemical, or oncogenic), were compared for their alterations in cell surface carbohydrates and invasive behavior. Glycopeptides derived from the surface of malignant cells expressed cancer-related changes in carbohydrate composition, demonstrated by gel filtration chromatography as a shift in size distribution in comparison with those from nonmalignant counterparts. This phenotypic property strictly correlated with the acquisition of the invasive capacity. Morphological transformation of cells without simultaneous alteration in surface carbohydrates was, however, insufficient for invasion. To test the possible mechanistic role of altered surface carbohydrates in the invasive capacity of cells, the surface molecules of noninvasive cells were modified by incubation with an alkyl-lysophospholipid (racemic 1-O-octadecyl-2-O-methyl glycero-3-phosphocholine). Alkyl-lysophospholipid induced an increase in surface sialylation resembling the changes found in malignant and invasive cells. After pretreatment with alkyl-lysophospholipid, morphologically transformed but nonmalignant and noninvasive cells became able to invade chick heart tissue. These findings indicate that alterations in cell surface carbohydrates, induced by entirely different mechanisms, endowed cells with invasive capacity.

Download full-text PDF

Source

Publication Analysis

Top Keywords

surface carbohydrates
24
invasive capacity
16
carbohydrates invasive
12
alterations cell
12
cell surface
12
cells
10
surface
9
mouse rat
8
rat cells
8
chick heart
8

Similar Publications

Sodium butyrate regulates macrophage polarization by TGR5/β-arrestin2 in vitro.

Mol Med

January 2025

Department of Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, China.

Background: Macrophages play an important role in the pathogenesis of ulcerative colitis (UC). We will explore the effects of sodium butyrate (SB) on macrophage function.

Methods: The targets of butyric acid were identified using SwissTargetPrediction database and surface plasmon resonance (SPR).

View Article and Find Full Text PDF

Background: Real-time and rapid detection of ingredients in food has important significance for food safety. However, traditional detection methods not only require bulky and costly instruments but also are often based on single-mode analysis, limiting their accuracy and applications in point-of-care testing. Herein, an integrated and miniaturized dual-mode device based on colorimetric and photoacoustic (PA) principles is developed, using Au@Ag nanoparticles (Au@AgNPs) as signal probe and ascorbic acid (AA) and ascorbate oxidase (AAO) as analytes.

View Article and Find Full Text PDF

Facile preparation of iridium-based AIE polymer dots for sensitive electrochemiluminescence immunoassay of CD44 protein.

Anal Chim Acta

March 2025

Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:

The development of aggregation-induced emission (AIE) luminophores is a fascinating and promising topic in electrochemiluminescence (ECL) bioanalysis. Herein, the AIE-active but water-insoluble [Ir(bt)₂(acac)] (bt = 2-phenylbenzothiazole, acac = acetylacetonate) was encapsulated within poly(styrene-maleic anhydride) (PSMA) using a simple nanoprecipitation method. This encapsulation strategy could effectively limit the free motion of Ir(bt)₂(acac) and trigger the aggregation-induced electrochemiluminescence (AIECL) effect.

View Article and Find Full Text PDF

Caffeine ameliorates metabolic-associated steatohepatitis by rescuing hepatic Dusp9.

Redox Biol

January 2025

Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China. Electronic address:

Caffeine (CAFF) is abundant in black coffee. As one of the most widely consumed beverages globally, coffee has been the focus of increasing clinical and basic research, particularly regarding its benefits in alleviating metabolic dysfunction-associated steatotic liver disease (MASLD). However, the therapeutic effects of CAFF on metabolic-associated steatohepatitis (MASH) and the underlying mechanisms remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Colorectal cancer (CRC) is a major cause of cancer deaths, and oxaliplatin (OXA) is a primary treatment that faces challenges due to the tumor microenvironment (TME).
  • A new multifunctional nanosystem, Rg3-Lip-OXA/CaO, uses Ginsenoside Rg3 liposomes to target CRC cells, delivering OXA and calcium peroxide (CaO) together.
  • Research showed that this nanosystem had good stability and release properties, effectively targeted cancer cells, and significantly suppressed tumor growth in mice, while also showing manageable acute toxicity.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!