Early detection, accurate monitoring, and therapeutics are major problems in non-small-cell lung cancer (NSCLC) patients. We identified genomic copy number variation of a unique panel of 40 mitochondria-targeted genes in NSCLCs (GEOGSE #29365). Validation of mRNA expression of these molecules revealed an altered panel of 34 genes in lung adenocarcinomas (LUAD) and 36 genes in lung squamous cell carcinomas (LUSC). In the LUAD subtype (n = 533), we identified 29 upregulated and 5 downregulated genes, while in the LUSC subtype (n = 502), a panel of 30 upregulated and 6 downregulated genes were discovered. The majority of these genes are associated with mitochondrial protein transport, ferroptosis, calcium signaling, metabolism, OXPHOS function, TCA cycle, apoptosis, and MARylation. Altered mRNA expression of SLC25A4, ACSF2, MACROD1, and GCAT was associated with poor survival of the NSCLC patients. Progressive loss of SLC25A4 protein expression was confirmed in NSCLC tissues (n = 59), predicting poor survival of the patients. Forced overexpression of SLC25A4 in two LUAD cell lines inhibited their growth, viability, and migration. A significant association of the altered mitochondrial pathway genes with LC subtype-specific classical molecular signatures was observed, implicating the existence of nuclear-mitochondrial cross-talks. Key alteration signatures shared between LUAD and LUSC subtypes including SLC25A4, ACSF2, MACROD1, MDH2, LONP1, MTHFD2, and CA5A could be helpful in developing new biomarkers and therapeutics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.202201724RR | DOI Listing |
Aging Dis
December 2024
School of Athletic Performance, Shanghai University of Sport, Shanghai, China.
Skeletal muscle dysfunction (SMD), one of the extrapulmonary complications in patients with chronic obstructive pulmonary disease (COPD), considerably influences patient prognosis. Mitochondria regulates their dynamic networks through a mitochondria quality control (MQC) mechanism, involving mitochondrial biogenesis, mitochondrial dynamics, and mitophagy. The MQC is crucial for mitochondrial homeostasis and health, and disruption of it can lead to mitochondrial damage, which is a key factor in the structural and functional impairment of skeletal muscle in COPD.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
Department of Respiratory and Critical Medicine, the First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, China.
Despite identifying specific CD8 T cell subsets associated with immunotherapy resistance, the molecular pathways driving this process remain elusive. Given the potential role of CD38 in regulating CD8 T cell function, we aimed to investigate the accumulation of CD38CD8 T cells in lung cancer and explore its role in immunotherapy resistance. Phenotypic analysis of tumoral CD8 T cells from both lung cancer patients and immunotherapy-resistant preclinical models revealed that CD38-expressing CD8 T cells consist of CD38 and CD38 subsets.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Duke University School of Medicine, Durham, NC, USA.
Background: Patients with Alzheimer's Disease (AD) frequently manifest comorbid neuropsychiatric symptoms (NPS) with depression and anxiety being most prevalent. Previously we identified shared genetic risk loci between AD and major depressive disorder (MDD). In another study, we constructed a polygenic risk score (PRS) based on MDD-GWAS data and demonstrated its performance in predicting depression onset in LOAD patients.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
Background: We aim to investigate efficacies of Ras homolog (Rho)-associated kinases (ROCK) inhibitors on Alzheimer's disease (AD) pathological proteins in human induced pluripotent stem cell (iPSC)-differentiated human neurons and the P301S tau transgenic mouse model (PS19).
Method: Quantitative liquid chromatography-mass spectrometry (LC-MS/MS) and targeted ELISA were implemented to investigate the effect of treatment with fasudil or its derivatives on the human neurons and brains from PS19 mice. We explored the efficacy of these ROCK inhibitors in reducing tau phosphorylation, and the brain proteomic profiles after their administration in mice.
Alzheimers Dement
December 2024
University Institute of Pharmaceutical sciences, Panjab University, Chandigarh, Chandigarh, India.
Background: Traumatic brain injury (TBI) due to external forces is a major cause of morbidity and mortality among people of all age groups, worldwide. Multiple biological processes like neuroinflammation, mitochondrial dysfunction, oxidative stress, amyloid β (Aβ) production, and tau hyperphosphorylation are involved in the pathogenesis of TBI. The role of neuroinflammation and oxidative stress has been suggested in the pathophysiology of brain injury-induced cognitive dysfunction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!