Phase separation is a common biological phenomenon in the liquid environment of organisms. Phase separation has been shown to be a key cause of many existing incurable diseases, such as the protein aggregates formed by phase separation of Alzheimer's Disease, Amyotrophic Lateral Sclerosis, Parkinson's disease, . Tracking the occurrence of phase separation is critical to many disease detection methods and solving many treatment problems. Its physicochemical properties and visual detection methods have flourished in the last few years in chemical biology, among which the fluorogenic toolbox has great application potential compared to the traditional detection methods that cannot visualize the phase separation process intuitively, but just show some parameters indirectly. This paper reviews the mechanism and disease correlation proven in recent years for phase separation and analyzes the detection methods for phase separation, including functional microscope imaging techniques, turbidity monitoring, macromolecule congestion sensing, analysis, . It is worth mentioning that the qualitative and quantitative analysis of aggregates formed by phase separation using parameters has successfully provided basic physical and chemical properties for phase separation aggregates, and is an important cornerstone for researchers to carry forward the past and break through the existing technical shackles to create new monitoring methods such as fluorescence methodology. Crucially, fluorescence methods for cell microenvironment imaging based on different mechanisms are discussed, such as AIE-based probes, TICT-based probes and FRET-based probes, .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3ob00660c | DOI Listing |
Biochem Cell Biol
January 2025
University of Victoria Faculty of Science, Biochemsitry and Microbiology, Victoria, British Columbia, Canada;
Methyl CpG binding protein 2 (MeCP2) is a chromatin-associated protein that remains enigmatic despite more than 30 years of research, primarily due to the ever-growing list of its molecular functions, and, consequently, its related pathologies. Loss of function MECP2 mutations cause the neurodevelopmental disorder Rett syndrome (RTT); in addition, dysregulation of MeCP2 expression and/or function are involved in numerous other pathologies, but the mechanisms of MeCP2 regulation are unclear. Advancing technologies and burgeoning mechanistic theories assist our understanding of the complexity of MeCP2 but may inadvertently cloud it if not rigorously tested.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China.
The molecular basis for the liquid-liquid phase separation (LLPS) behavior of various biomolecular components in the cell is the formation of multivalent and low-affinity interactions. When the content of these components exceeds a certain critical concentration, the molecules will spontaneously coalesce to form a new liquid phase; i.e.
View Article and Find Full Text PDFRadiol Phys Technol
January 2025
Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
This study aimed to investigate the cause of susceptibility underestimation in body quantitative susceptibility mapping (QSM) and propose a water/fat separate reconstruction to address this issue. A numerical simulation was conducted using conventional QSM with/without body masking. The conventional method with body masking underestimated the susceptibility across all regions, whereas the method without body masking estimated an equivalent value to the ground truth.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Helmholtz Institute Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Jülich, Fürther Strasse 248, 90429 Nürnberg, Germany.
Interest in organic solar cells (OSCs) is constantly rising in the field of photovoltaic devices. The device performance relies on the bulk heterojunction (BHJ) nanomorphology, which develops during the drying process and additional post-treatment. This work investigates the effect of thermal annealing (TA) on the all-small molecule DRCN5T:PCBM blend with phase field simulations.
View Article and Find Full Text PDFGreen Chem
December 2024
KU Leuven, Department of Chemistry Celestijnenlaan 200F P.O. box 2404 B-3001 Leuven Belgium
Direct lithium extraction (DLE) from natural surface and geothermal brines is very challenging due to the low ratio of lithium to other metals, and the lack of suitable materials that bind lithium with sufficiently high selectivity. In this paper, a synergistic solvent extraction system is described that comprises a liquid ion exchanger (saponified bis(2-ethylhexyl)dithiophosphoric acid) and a lithium-selective ligand (2,9-dibutyl-1,10-phenanthroline) in an aliphatic diluent. The extraction mechanism was investigated and was confirmed to involve the binding of lithium to the selective ligand, while the liquid ion exchanger facilitates the transfer of metal ions from the aqueous to the organic phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!