Despite enormous progress in modern medicine, prostate cancer (PCa) remains a major public health problem due to its high incidence and mortality. Although studies have shown in vitro antitumor effects of cucurbitacins from Cucumis sativus, the in vivo anticancer effect of the seed oil as a whole, has yet to be demonstrated. The present study evaluated the in vitro anticancer mechanisms of C. sativus (CS) seed oil and its possible chemopreventive potential on benzo(a)pyrene (BaP)-induced PCa in Wistar rat. In vitro cell growth, clone formation, cell death mechanism, cell adhesion and migration as well as expression of integrins β-1 and β-4 were assessed. In vivo PCa was induced in 56 male rats versus 8 normal control rats, randomized in normal (NOR) and negative (BaP) control groups which, received distilled water; the positive control group (Caso) was treated with casodex (13.5 mg/kg BW). One group received the total seed extract at the dose of 500 mg/kg BW; while the remaining three groups were treated with CS seed oil at 42.5, 85, and 170 mg/kg BW. The endpoints were: morphologically (prostate tumor weight and volume), biochemically (total protein, prostate specific antigen (PSA), oxidative stress markers such as MDA, GSH, catalase, and SOD) and histologically. As results, CS seed oil significantly and concentration-dependently reduced the DU145 prostate cancer cell growth and clone formation (optimum = 100 μg/mL). It slightly increased the number of apoptotic cells and inhibited the migration and invasion of DU145 cells, while it decreased their adhesion to immobilized collagen and fibrinogen. The expression of integrin β-1 and β-4 was increased in presence of 100 μg/mL CS oil. In vivo, the BaP significantly elevated the incidence of PC tumors (75%), the total protein and PSA levels, pro-inflammatory cytokines (TNF-α, IL-1, and IL-6) and MDA levels compared to NOR. CS seeds oil significantly counteracted the effect of BaP by decreasing significantly the PC incidence (12.5%), and increasing the level of antioxidant (SOD, GSH, and catalase) and anti-inflammatory cytokine IL-10 in serum. While in BaP group PCa adenocarninoma was the most representative neoplasm, rats treated with 85 and 170 mg/kg prevented it in the light of the casodex. It is conclude that CS may provide tumor suppressive effects in vitro and in vivo which makes it an interesting candidate to support the current treatment protocol.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tox.23830DOI Listing

Publication Analysis

Top Keywords

seed oil
20
prostate cancer
12
cucumis sativus
8
vitro vivo
8
cell growth
8
growth clone
8
clone formation
8
β-1 β-4
8
total protein
8
gsh catalase
8

Similar Publications

A rare dominant allele determines seed coat color and improves seed oil content in .

Sci Adv

January 2025

College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China.

Yellow seed coat color (SCC) is a valuable trait in , which is significantly correlated to high seed oil content (SOC) and low seed lignocellulose content (SLC). However, no dominant yellow SCC genes were identified in . In this study, a dominant yellow SCC N53-2 was verified, and then 58,981 eQTLs and 25 trans-eQTL hotspots were identified in a double haploid population derived from N53-2 and black SCC material Ken-C8.

View Article and Find Full Text PDF

This study aimed to evaluate the antimicrobial effectiveness of cumin seed essential oil (CEO) after encapsulation in chickpea protein-maltodextrin matrix by spray drying and to provide insight into potential use as a natural ingredient in meat-based products. The surface morphology results of encapsulated CEO showed the dispersion in the wall material matrix, and the observed specific common peaks in the FT-IR spectra of encapsulated and non-encapsulated CEO proved the successful encapsulation. The antibacterial activity of non-encapsulated CEO against BC1402, ATCC 27853, Typhimurium ATCC 0402, ATCC 25923 were first evaluated by disc diffusion assay.

View Article and Find Full Text PDF

Objectives: Recent randomized controlled trials (RCTs) have studied the potential effect of the topical use of sesame oil (SO), obtained from the sesame plant seeds (Sesamum indicum L., Pedaliaceae family), in preventing or alleviating the symptoms of infusion-related phlebitis (IRP); nevertheless, their data are inconsistent. Thus, this review sought to qualitatively and quantitatively synthesize data from all available RCTs concerning the effect of the topical administration of SO on managing IRP.

View Article and Find Full Text PDF

The demand for sustainable plant-based protein is rising due to concerns over the environmental impact of animal-based protein. One promising yet overlooked protein source is the seed cake generated from Camellia oleifera oil extraction (COSC), which contains 14-20 % crude protein. COSC protein (COSCP) exhibit excellent nutritional and functional properties making it a promising ingredient for innovative food products.

View Article and Find Full Text PDF

Encapsulation of paclitaxel into date palm lipid droplets for enhanced brain cancer therapy.

Sci Rep

December 2024

Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria.

Paclitaxel, a powerful anticancer drug, is limited by its poor water solubility and systemic toxicity, which hinder its effectiveness against aggressive brain tumors. This study aims to overcome these challenges by exploring novel intranasal delivery methods using lipid droplets (LDs) derived from date palm seeds (DPLDs) and mouse liver (MLLDs). The anticancer efficacy of PTX was evaluated using a comparative intranasal delivery approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!