Background: DICER1-AS1 is reported to promote the progression and disturb the cell cycle in osteosarcoma; however, its mechanism has rarely been studied.

Materials And Methods: DICER1-AS1 expression levels were evaluated by qPCR and fluorescence in situ hybridization (FISH). The total, nuclear, and cytosolic levels of CDC5L were measured by western blotting and immunofluorescence (IF). Cell proliferation, apoptosis, and cell cycle analyses were conducted using the colony formation, CCK-8 assay, terminal transferase-mediated UTP nick end-labeling kit (TUNEL) assay, and flow cytometry. Levels of cell proliferation-, cell cycle-, and cell apoptosis-related proteins were determined by western blotting. RNA immunoprecipitation (RIP) and RNA pull-down assays were conducted to evaluate the relationship between DICER1-AS1 and CDC5L.

Results: LncRNA DICER1-AS1 was highly expressed in samples of osteosarcoma tissue and in osteosarcoma cell lines. DICER1-AS1 knockdown inhibited cell proliferation, promoted cell apoptosis, and disturbed the cell cycle. Moreover, DICER1-AS1 was found to bind with CDC5L, and knockdown of DICER-AS1 inhibited the nuclear transfer of CDC5L. DICER1-AS1 knockdown also reversed the effects of CDC5L overexpression on cell proliferation, apoptosis, and the cell cycle. Moreover, CDC5L inhibition suppressed cell proliferation, promoted cell apoptosis, and disturbed the cell cycle, and those effects were further enhanced by DICER1-AS1 knockdown. Finally, DICER1-AS knockdown inhibited tumor growth and proliferation, and promoted cell apoptosis .

Conclusion: LncRNA DICER1-AS1 knockdown inhibits the nuclear transfer of CDC5L protein, arrests the cell cycle, and induces apoptosis to suppress the development of osteosarcoma. Our results suggest a novel target (DICER1-AS1) for treatment of osteosarcoma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03008207.2023.2223289DOI Listing

Publication Analysis

Top Keywords

cell cycle
28
cell
20
cell proliferation
20
cell apoptosis
16
dicer1-as1 knockdown
16
lncrna dicer1-as1
12
nuclear transfer
12
proliferation promoted
12
promoted cell
12
dicer1-as1
11

Similar Publications

Research into the role of probiotics-often referred to as "living supplements"-in cancer therapy is still in its early stages, and uncertainties regarding their effectiveness remain. Relevantly, chemopreventive and therapeutic effects of probiotics have been determined. There is also substantial evidence supporting their potential in cancer treatment such as immunotherapy.

View Article and Find Full Text PDF

Background: Litter size in mice is an important fitness and economic feature that is controlled by several genes and influenced by non-genetic factors too. High positive selection pressure in each generation for Litter size at birth (LSB), resulted in the development of high and low prolific lines of inbred Swiss albino mice (SAM). Despite uniform management conditions, these lines showed variability in LSB across the generation.

View Article and Find Full Text PDF

Progesterone induces meiosis through two obligate co-receptors with PLA2 activity.

Elife

January 2025

Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar.

The steroid hormone progesterone (P4) regulates multiple aspects of reproductive and metabolic physiology. Classical P4 signaling operates through nuclear receptors that regulate transcription. In addition, P4 signals through membrane P4 receptors (mPRs) in a rapid nongenomic modality.

View Article and Find Full Text PDF

a major human fungal pathogen, can form biofilms on a variety of inert and biological surfaces. biofilms allow for immune evasion, are highly resistant to antifungal therapies, and represent a significant complication for a wide variety of immunocompromised patients in clinical settings. While transcriptional regulators and global transcriptional profiles of biofilm formation have been well-characterized, much less is known about translational regulation of this important virulence property.

View Article and Find Full Text PDF

Miguel Chiurillo works in the field of protein kinases, studying their role in cell signaling and cell cycle progression in . In this mSphere of Influence article, he reflects on how the research articles "Systematic functional analysis of protein kinases identifies regulators of differentiation or survival" by Baker et al. and "Screening the kinome with high throughput tagging identifies a regulator of invasion and egress" by Smith et al.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!