A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prevalent new user designs: A literature review of current implementation practice. | LitMetric

Purpose: Prevalent new user (PNU) designs extend the active comparator new user design by allowing for the inclusion of initiators of the study drug who were previously on a comparator treatment. We performed a literature review summarising current practice.

Methods: PubMed was searched for studies applying the PNU design since its proposal in 2017. The review focused on three components. First, we extracted information on the overall study design, including the database used. We summarised information on implementation of the PNU design, including key decisions relating to exposure set definition and estimation of time-conditional propensity scores. Finally, we reviewed the analysis strategy of the matched cohort.

Results: Nineteen studies met the criteria for inclusion. Most studies (73%) implemented the PNU design in electronic health record or registry databases, with the remaining using insurance claims databases. Of 15 studies including a class of prevalent users, 40% deviated from the original exposure set definition proposals in favour of a more complex definition. Four studies did not include prevalent new users but used other aspects of the PNU framework. Several studies lacked details on exposure set definition (n = 2), time-conditional propensity score model (n = 2) or integration of complex analytical techniques, such as the high-dimensional propensity score algorithm (n = 3).

Conclusion: PNU designs have been applied in a range of therapeutic and disease areas. However, to encourage more widespread use of this design and help shape best practice, there is a need for improved accessibility, specifically through the provision of analytical code alongside guidance to support implementation and transparent reporting.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pds.5656DOI Listing

Publication Analysis

Top Keywords

pnu design
12
exposure set
12
set definition
12
prevalent user
8
literature review
8
pnu designs
8
design including
8
time-conditional propensity
8
prevalent users
8
propensity score
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!