Back to the future through the wormhole: Caenorhabditis elegans as a preclinical model.

Dis Model Mech

Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.

Published: June 2023

On the 15th Anniversary of Disease Models & Mechanisms as a trailblazing venue for the dissemination of discoveries pertaining to human health involving model systems, we celebrate the journey of this journal, as mirrored through the evolution of research using the nematode roundworm, Caenorhabditis elegans. Driven by the exponential growth of genomic data, worms have advanced from a basic research tool to precise and elegant models for disease and have yielded substantive insights into numerous human disorders. A harbinger of functional genomic analysis since the inception of RNA interference screening, the directed application of C. elegans for identification of disease-modifying factors has revealed new pathways and therapeutic targets to accelerate translational outcomes. Together with advances in gene editing, worm models are now ushering in the era of precision medicine with characteristic expedience.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10281264PMC
http://dx.doi.org/10.1242/dmm.050333DOI Listing

Publication Analysis

Top Keywords

caenorhabditis elegans
8
future wormhole
4
wormhole caenorhabditis
4
elegans preclinical
4
preclinical model
4
model 15th
4
15th anniversary
4
anniversary disease
4
disease models
4
models mechanisms
4

Similar Publications

Robust undulatory locomotion through neuromechanical adjustments in a dissipative medium.

J R Soc Interface

January 2025

Nantes Université, École Centrale Nantes, IMT Atlantique, CNRS, LS2N, UMR 6004, Nantes F-44000, France.

Dissipative environments are ubiquitous in nature, from microscopic swimmers in low-Reynolds-number fluids to macroscopic animals in frictional media. In this study, we consider a mathematical model of a slender elastic locomotor with an internal rhythmic neural pattern generator to examine various undulatory locomotion such as swimming and crawling behaviours. By using local mechanical load as mechanosensory feedback, we have found that undulatory locomotion robustly emerges in different rheological media.

View Article and Find Full Text PDF

Norharmane prevents muscle aging via activation of SKN-1/NRF2 stress response pathways.

Redox Biol

January 2025

Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, South Korea; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si, South Korea. Electronic address:

Sarcopenia, the age-related decline in muscle mass and function, is a significant contributor to increased frailty and mortality in the elderly. Currently, no FDA-approved treatment exists for sarcopenia. Here, we identified norharmane (NR), a β-carboline alkaloid, as a potential therapeutic agent for mitigating muscle aging.

View Article and Find Full Text PDF

The ε4 variant of human apolipoprotein E () is a key genetic risk factor for neurodegeneration in Alzheimer's disease and elevated all-cause mortality in humans. Understanding the factors and mechanisms that can mitigate the harmful effects of has significant implications. In this study, we find that inactivating the VHL-1 (Von Hippel-Lindau) protein can suppress mortality, neural and behavioral pathologies caused by transgenic human in .

View Article and Find Full Text PDF

The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, life span, and stress resistance. In Caenorhabditis elegans, DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood.

View Article and Find Full Text PDF

Strawberry anthocyanin pelargonidin-3-glucoside attenuated OA-induced neurotoxicity by activating UPR.

Food Funct

January 2025

Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.

In this study, network pharmacology analysis revealed that strawberry anthocyanins mainly interfered with lipid metabolism and nerve-related signaling pathways. Pelargonidin-3-glucoside (Pg3G), one of the main anthocyanins in strawberry, was screened as the most effective anthocyanin for attenuating excess lipid accumulation. Moreover, Pg3G decreased lipid levels, relieved oxidative stress, and restored abnormal behavioral activities in under oleic acid (OA) exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!