Unlabelled: Methylated gallic acid (MGA) is a potent anticancer biomolecular entity (BME). Loading MGA into a nano-vesicular (NV) drug delivery system using nanotechnology approaches can increase the efficiency of the drug and its release characteristics. This study aimed to develop an ethosomal nano-vesicular (ENV) system loaded with MGA that shows augmented entrapment efficiency, release rate, and cytotoxic potential against oral cancer. The ENV system was synthesized using Soy lecithin, ethanol, and propylene glycol. The ENV system's characterization (DLS, Zeta potential, TEM, FT-IR) with and without MGA was performed. The cytotoxicity evaluation of MGA alone compared to the MGA-loaded ENV system was performed against the squamous cell carcinoma-9 (SCC-9) cell line. The DLS and zeta potential analysis revealed the size of the ENV system as 58.2 nm and-43.5 mV charge, respectively. MGA loading to ENV system increased size to 63 nm and decreased charge to -2.8 mV. Peaks of FTIR analysis confirmed the encapsulation of MGA in the ENV system. TEM studies revealed the spherical surface morphology of the MGA-loaded ENV system. Compared with conventional MGA alone administration, ENV loaded with MGA showed better drug absorption and bioavailability in vitro. Furthermore, the entrapment efficiency, in vitro drug release, and cytotoxicity results firmly establish the improved therapeutic potential of ENV loaded with MGA against oral cancer cells than MGA alone.
Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03652-6.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10257610 | PMC |
http://dx.doi.org/10.1007/s13205-023-03652-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!