With the nanotechnology boom, artificially designed nucleic acid nanotubes have aroused interest due to their practical applications in nanorobotics, vaccine design, membrane channels, drug delivery, and force sensing. In this paper, computational study was performed to investigate the structural dynamics and mechanical properties of RNA nanotubes (RNTs), DNA nanotubes (DNTs), and RNA-DNA hybrid nanotubes (RDHNTs). So far, the structural and mechanical properties of RDHNTs have not been examined in experiments or theoretical calculations, and there is limited knowledge regarding these properties for RNTs. Here, the simulations were carried out using the equilibrium molecular dynamics (MD) and steered molecular dynamics (SMD) approaches. Using in-house scripting, we modeled hexagonal nanotubes composed of six double-stranded molecules connected by four-way Holliday junctions. Classical MD analyses were performed on the collected trajectory data to investigate structural properties. Analyses of the microscopic structural parameters of RDHNT indicated a structural transition from the A-form to a conformation between the A- and B-forms, which may be attributable to the increased rigidity of RNA scaffolds compared to DNA staples. Comprehensive research on the elastic mechanical properties was also conducted based on spontaneous thermal fluctuations of nanotubes and employing the equipartition theorem. The Young's modulus of RDHNT ( = 165 MPa) and RNT ( = 144 MPa) was found to be almost the same and nearly half of that found for DNT ( = 325 MPa). Furthermore, the results showed that RNT was more resistant to bending, torsional, and volumetric deformations than DNT and RDHNT. We also used non-equilibrium SMD simulations to acquire comprehensive knowledge of the mechanical response of nanotubes to tensile stress.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp01028gDOI Listing

Publication Analysis

Top Keywords

mechanical properties
16
molecular dynamics
12
dynamics mechanical
8
rna-dna hybrid
8
nanotubes
8
hybrid nanotubes
8
investigate structural
8
mpa rnt
8
properties
6
mechanical
5

Similar Publications

The optimal method for three-dimensional thermal imaging within cells involves collecting intracellular temperature responses while simultaneously obtaining corresponding 3D positional information. Current temperature measurement techniques based on the photothermal properties of quantum dots face several limitations, including high cytotoxicity and low fluorescence quantum yields. These issues affect the normal metabolic processes of tumor cells.

View Article and Find Full Text PDF

Olfactory-Inspired Separation-Sensing Nanochannel-Based Electronics for Wireless Sweat Monitoring.

ACS Nano

January 2025

CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.

Human sweat has the potential to be sufficiently utilized for noninvasive monitoring. Given the complexity of sweat secretion, the sensitivity and selectivity of sweat monitoring should be further improved. Here, we developed an olfactory-inspired separation-sensing nanochannel-based electronic for sensitive and selective sweat monitoring, which was simultaneously endowed with interferent separation and target detection performances.

View Article and Find Full Text PDF

Bioinspired Adhesive Hydrogel Platform with Photothermal Antimicrobial, Antioxidant, and Angiogenic Properties for Whole-Process Management of Diabetic Wounds.

ACS Appl Mater Interfaces

January 2025

Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China.

Diabetic wound healing remains a major challenge in modern medicine. The persistent inflammation and immune dysfunction hinder angiogenesis by producing excessive ROS and increasing the susceptibility to bacterial infection. In this study, we developed an integrated strategy for whole-process management of diabetic wounds based on a bioinspired adhesive hydrogel platform with hemostasis, photothermal antimicrobial, antioxidant, anti-inflammatory, and angiogenic properties.

View Article and Find Full Text PDF

Study on the effect of water content on physical properties of bentonite.

PLoS One

January 2025

Lecturer College of Civil and Traffic Engineering, Henan University of Urban Construction, Ping Dingshan, China.

Moisture content profoundly influences the engineering properties of expansive soil, a critical consideration in various geotechnical applications. This study delves into the intricate relationship between water content and the physical properties of bentonite, a key constituent of expansive soil. Through a comprehensive analysis encompassing fundamental physical properties, rheological characteristics, permeability behavior, and microscopic features, we elucidate the complex interplay between water content and bentonite behavior.

View Article and Find Full Text PDF

Modern-day applications demand onboard electricity generation that can be achieved using piezoelectric phenomena. Reducing the dimensionality of materials is a pathway to enhancing the piezoelectric properties. Transition-metal dichalcogenides have been shown to exhibit high piezoelectricity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!