Selective proton transport through proteins is essential for forming and using proton gradients in cells. Protons are conducted along hydrogen-bonded 'wires' of water molecules and polar side chains, which, somewhat surprisingly, are often interrupted by dry apolar stretches in the conduction pathways, inferred from static protein structures. Here we hypothesize that protons are conducted through such dry spots by forming transient water wires, often highly correlated with the presence of the excess protons in the water wire. To test this hypothesis, we performed molecular dynamics simulations to design transmembrane channels with stable water pockets interspersed by apolar segments capable of forming flickering water wires. The minimalist designed channels conduct protons at rates similar to viral proton channels, and they are at least 10-fold more selective for H over Na. These studies inform the mechanisms of biological proton conduction and the principles for engineering proton-conductive materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10475958PMC
http://dx.doi.org/10.1038/s41557-023-01210-4DOI Listing

Publication Analysis

Top Keywords

water wires
12
transient water
8
selective proton
8
proton transport
8
protons conducted
8
proton
5
water
5
wires mediate
4
mediate selective
4
transport designed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!