Many bacteriophages evade bacterial immune recognition by substituting adenine with 2,6-diaminopurine (Z) in their genomes. The Z-genome biosynthetic pathway involves PurZ that belongs to the PurA (adenylosuccinate synthetase) family and bears particular similarity to archaeal PurA. However, how the transition of PurA to PurZ occurred during evolution is not clear; recapturing this process may shed light on the origin of Z-containing phages. Here we describe the computer-guided identification and biochemical characterization of a naturally existing PurZ variant, PurZ0, which uses guanosine triphosphate as the phosphate donor rather than the ATP used by PurZ. The atomic resolution structure of PurZ0 reveals a guanine nucleotide binding pocket highly analogous to that of archaeal PurA. Phylogenetic analyses suggest PurZ0 as an intermediate during the evolution of archaeal PurA to phage PurZ. Maintaining the balance of different purines necessitates further evolvement of guanosine triphosphate-using PurZ0 to ATP-using PurZ in adaptation to Z-genome life.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41564-023-01410-1 | DOI Listing |
Nat Microbiol
July 2023
Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
Many bacteriophages evade bacterial immune recognition by substituting adenine with 2,6-diaminopurine (Z) in their genomes. The Z-genome biosynthetic pathway involves PurZ that belongs to the PurA (adenylosuccinate synthetase) family and bears particular similarity to archaeal PurA. However, how the transition of PurA to PurZ occurred during evolution is not clear; recapturing this process may shed light on the origin of Z-containing phages.
View Article and Find Full Text PDFScience
April 2021
Biology of Gram-Positive Pathogens, Institut Pasteur, CNRS-UMR 2001, Paris, France.
Cells have two purine pathways that synthesize adenine and guanine ribonucleotides from phosphoribose via inosylate. A chemical hybrid between adenine and guanine, 2-aminoadenine (Z), replaces adenine in the DNA of the cyanobacterial virus S-2L. We show that S-2L and phage PhiVC8 encode a third purine pathway catalyzed by PurZ, a distant paralog of succinoadenylate synthase (PurA), the enzyme condensing aspartate and inosylate in the adenine pathway.
View Article and Find Full Text PDFSyst Appl Microbiol
December 1998
Department of Molecular Biology, Biomolecular Engineering Research Institute (BERI), Japan.
Adenylosuccinate synthetase (PurA) catalyzes the first step in the de novo AMP synthesis and has been extensively studied in both Bacteria and Eukarya. We cloned the purA gene from the hyperthermophilic archaeon, Pyrococcus furiosus. The gene appears to be individually transcribed and encodes a protein of 339 amino acids.
View Article and Find Full Text PDFJ Mol Biol
August 1996
Institut de Génétique et Microbiologie, URA 1354, Université Paris-Sud, Orsay, France.
The first example of a hyperthermophilic adenylosuccinate synthetase is reported, which is an enzyme that must maintain its folded structure at temperatures as high as 102 degrees C. The amino acid sequence of this key enzyme has been determined after cloning and sequencing the purA-like gene from the archaeal Pyrococcus sp. strain ST700.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!