Neurodegeneration is characterized as the continuous functional and structural loss of neurons, resulting in various clinical and pathological manifestations and loss of functional anatomy. Medicinal plants have been oppressed from ancient years and are highly considered throughout the world as a rich source of therapeutic means for the prevention, treatment of various ailments. Plant-derived medicinal products are becoming popular in India and other nations. Further herbal therapies shows good impact on chronic long term illnesses including degenerative conditions of neurons and brain. The use of herbal medicines continues to expand rapidly across the world. The active phytochemical constituents of individual plants are sometimes insufficient to achieve the desirable therapeutic effects. Combining the multiple herbs in a particular ratio (polyherbalism) will give a better therapeutic effect and reduce toxicity. Herbal-based nanosystems are also being studied as a way to enhance the delivery and bioavailability of phytochemical compounds for the treatment of neurodegenerative diseases. This review mainly focuses on the importance of the herbal medicines, polyherbalism and herbal-based nanosystems and its clinical significance for neurodegenerative diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/a-2076-7939 | DOI Listing |
PLoS One
January 2025
Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh.
Tinospora cordifolia extract exhibits diverse benefits-anti-arthritis, anti-malarial, anti-allergic, anti-diabetic, antihepatotoxic, and antipyretic effects. Its specific anti-inflammatory and healing capacities remain unexplored, prompting a study utilizing a mouse skin wound model and direct T. cordifolia extraction.
View Article and Find Full Text PDFBraz J Microbiol
January 2025
Innovation and Drug Discovery, Sava Healthcare Limited, Research Center, MIDC, Block D1, Plot No. 17/6, Chinchwad, Pune, 411019, India.
Plant parts such as roots, bark, leaves, flowers, and fruits that hold ethnopharmacological significance are naturally prone to microbial contamination, influenced by environmental factors like moisture and humidity. This study focuses on assessing the microbial load in the raw material of Tribulus terrestris (TT). The primary bacterium isolated from the pulverized raw material was identified as Bacillus haynesii through 16S rRNA sequencing.
View Article and Find Full Text PDFBraz J Microbiol
January 2025
Microbiology and Microbial Biotechnology Laboratory, Department of Botany and Forestry, Vidyasagar University, 721102, Midnapore, West Bengal, India.
Endophytic actinomycetes are potential sources of novel pharmaceutically active metabolites, significantly advancing natural product research. In the present investigation, secondary metabolites from two endophytic actinomycetes, Streptomyces parvulus GloL3, and Streptomyces lienomycini SK5, isolated from medicinal plant taxa, Globba marantina, and Selaginella kraussiana, exhibited broad-spectrum bioactivity. Ethyl Acetate (EA) extract of SK5 showed antimicrobial activity against nine human pathogens, including Methicillin-resistant Staphylococcus aureus (MRSA), Candida tropicalis, and C.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Background: Breast carcinoma stands out as the most widespread invasive cancer and the top contributor to cancer-related mortality in women. Nanoparticles have emerged as promising tools in cancer detection, diagnosis, and prevention. In this study, the antitumor and apoptotic capability of silver nanoparticles synthesized through Scrophularia striata extract (AgNPs-SSE) was investigated toward breast cancer cells.
View Article and Find Full Text PDFFASEB J
January 2025
College of Pharmacy, Changchun University of Chinese Medicine, Jilin, China.
Xuefu Zhuyu Decoction (XZD) is widely used in the treatment of cardiovascular diseases. The purpose of this study was to explore the pharmacological effects and molecular mechanisms of XZD in improving hyperlipidemia and to provide a theoretical framework for clinical application. In this study, the signaling pathways regulated by XZD in improving hyperlipidemia were predicted by network pharmacology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!