A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Performance of biochar mixed cement paste for removal of Cu, Pb and Zn from stormwater. | LitMetric

Performance of biochar mixed cement paste for removal of Cu, Pb and Zn from stormwater.

Environ Res

School of Engineering, RMIT University Melbourne, Australia; Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Australia. Electronic address:

Published: September 2023

Using biochar as a partial replacement of Portland cement in cementitious materials is a promising solution to mitigate negative environmental impacts. However, current studies in available literature primarily focus on the mechanical properties of composites made with cementitious materials and biochar. Therefore, this paper reports the effects of the type of biochar, the percentage of biochar addition, and the particle size of the biochar on the removal efficiency of Cu, Pb, and Zn, as well as the effect of contact time on the removal efficiency of Cu, Pb, and Zn, along with the compressive strength. The peak intensities of OH, CO and Calcium Silicate Hydrate (Ca-Si-H) peaks increase with increasing biochar addition levels, reflecting increased hydration product formation. The reduction of particle size of biochar causes the polymerization of the Ca-Si-H gel. However, no significant changes were observed in heavy metal removal, irrespective of the percentage of biochar addition, the particle size of biochar, or the type of biochar added to the cement paste. Adsorption capacities above 19 mg/g, 11 mg/g and 19 mg/g for Cu, Pb and Zn were recorded in all composites at an initial pH of 6.0. The Pseudo second order model best described the kinetics of the Cu, Pb, and Zn removal. The rate of adsorptive removal increases with the decrease in the density of the adsorbents. Over 40% of Cu and Zn were removed as carbonates and hydroxides through precipitation, whereas over 80% of Pb removal was via adsorption. Heavy metals bonded with OH, CO and Ca-Si-H functional groups. The results demonstrate that biochar can be used as a cement replacement without negatively impacting heavy metal removal. However, neutralization of the high pH is needed before safe discharge.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.116331DOI Listing

Publication Analysis

Top Keywords

biochar addition
12
particle size
12
size biochar
12
biochar
11
cement paste
8
removal
8
cementitious materials
8
type biochar
8
percentage biochar
8
addition particle
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!