Microvascular endothelial cells are a newly discovered cell type involved in the phagocytosis of myelin debris, which play a key role in the repair of spinal cord injuries. Several methods for the preparation of myelin debris and parameters for constructing a coculture system of microvascular endothelial cells and myelin debris are available, but no systematic studies have yet been conducted, which hinders further exploration of the mechanisms of demyelinating disease repair. Herein, we aimed to develop a standardized method for this process. Myelin debris of different sizes was obtained from the brains of C57BL/6 mice by stripping the brains under aseptic conditions, multiple grinding, gradient centrifugation, etc. Transmission electron microscopy and nanoparticle size analysis were used to characterize myelin debris. Microvascular endothelial cells were cultured on a matrix gel, and myelin debris of different sizes (fluorescently labeled using CFSE) was placed in coculture after forming a vascular-like structure. Subsequently, myelin debris of different concentrations was cocultured in the vascular-like structure, and phagocytosis of myelin debris by microvascular endothelial cells was detected using immunofluorescence staining and flow cytometry. We found that myelin debris could be successfuly obtained from the mouse brain with secondary grinding and other steps and cocultured with microvascular endothelial cells at a concentration of 2 mg/mL, which promoted the phagocytosis of microvascular endothelial cells. In conclusion, we provide a reference for the protocol of a coculture system of microvascular endothelial cells and myelin debris.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2023.137345 | DOI Listing |
Cell Mol Immunol
January 2025
Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA, 22908, USA.
Int J Mol Sci
December 2024
Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
Aging and apolipoprotein E4 () are the two most significant risk factors for late-onset Alzheimer's disease (LOAD). Compared to , disrupts cholesterol homeostasis, increases cholesteryl esters (CEs), and exacerbates neuroinflammation in brain cells, including microglia. Targeting CEs and neuroinflammation could be a novel strategy to ameliorate -dependent phenotypes.
View Article and Find Full Text PDFNeurochem Int
January 2025
Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China. Electronic address:
The term "circadian rhythm" refers to the 24-h oscillations found in various physiological processes in organisms, responsible for maintaining bodily homeostasis. Many neurological diseases mainly involve the process of demyelination, and remyelination is crucial for the treatment of neurological diseases. Current research mainly focuses on the key role of circadian clocks in the pathophysiological mechanisms of multiple sclerosis.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
Spinal cord injury (SCI) leads to permanent motor and sensory loss that is exacerbated by intraspinal inflammation and persists months to years after injury. After SCI, monocyte-derived macrophages (MDMs) infiltrate the lesion to aid in myelin-rich debris clearance. During debris clearance, MDMs adopt a proinflammatory phenotype that exacerbates neurodegeneration and hinders recovery.
View Article and Find Full Text PDFTheranostics
January 2025
State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!