Bell's palsy was associated with TRPV2 downregulation of Schwann cell by cold stress.

J Stomatol Oral Maxillofac Surg

Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi, 030001, China; Institute for Oral Science, Matsumoto Dental University, Shiojiri 399-0781, Japan; Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri 399-0781, Japan. Electronic address:

Published: December 2023

Objective: Epidemiological and clinical studies have shown that sharp changes in the ambient temperature are associated with the occurrence and development of Bell's palsy. However, the specific pathogenesis of peripheral facial paralysis remains nebulous. This study investigated the effect of cold stress on transient receptor potential cation channel subfamily V member 2 (TRPV2) secretion by Schwann cells and its role in Bell's palsy.

Materials And Methods: Schwann cell morphology was observed using transmission electron microscopy (TEM). Cell proliferation, apoptosis and cell cycle were analysed using CCK8 and flow cytometry. ELISA, Reverse transcription-quantitative PCR, western blotting and immunocytochemical fluorescence staining were used to detect the effects of cold stress on TRPV2, neural cell adhesion molecule (NCAM) and nerve growth factor (NGF) expression in Schwann cells.

Results: Cold stress resulted in a widening of the intercellular space, and the particles on the membrane showed different degrees of loss. Cold stress may cause Schwann cells to enter a cold dormant state. ELISA, RT-qPCR, western blotting and immunocytochemical fluorescences staining indicated that cold stress inhibited the expression of TRPV2, NCAM, and NGF.

Conclusions: Drastic temperature difference between cold and heat can downregulate TRPV2 and the secretome of Schwann cells. The imbalance of Schwann cell homeostasis under such stress may contribute to nerve signalling dysfunction leading to the development of facial paralysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jormas.2023.101533DOI Listing

Publication Analysis

Top Keywords

cold stress
24
schwann cell
12
schwann cells
12
bell's palsy
8
cold
8
facial paralysis
8
western blotting
8
blotting immunocytochemical
8
schwann
7
stress
7

Similar Publications

Background And Aim: A critical causative factor of oxidative stress and inflammation leading to several skin complications is ultraviolet-B (UVB) irradiation. (LR), or tiger milk mushroom, is native to Southeast Asia. Cold water extract of an LR cultivar, TM02® (xLr®) is a promising anti-oxidant and anti-inflammatory source.

View Article and Find Full Text PDF

Cold stress in winter is one of the most severe abiotic stresses on plant growth and flourishing, and the selection of cold tolerant genotypes is an important strategy to ensure the safety of plant growth and development. Cyclocarya paliurus, a diclinous and versatile tree species originally in subtropical regions, has been introduced and cultivated in the warm temperate zone of China to meet the increasing market demand for its leaf yield. However, information regarding its cold tolerance remains limited.

View Article and Find Full Text PDF

Recent studies have unveiled the deep sea as a rich biosphere, populated by species descended from shallow-water ancestors post-mass extinctions. Research on genomic evolution and microbial symbiosis has shed light on how these species thrive in extreme deep-sea conditions. However, early adaptation stages, particularly the roles of conserved genes and symbiotic microbes, remain inadequately understood.

View Article and Find Full Text PDF

Abiotic stresses, notably cold stress, significantly influence various aspects of plant development and reproduction. Various approaches have been proposed to counteract the adverse impacts of cold stress on plant productivity. The unique properties of nanoparticles contribute to an enhanced tolerance of plants to challenging conditions.

View Article and Find Full Text PDF

Role of the TME in immune checkpoint blockade resistance of non-small cell lung cancer.

Cancer Drug Resist

December 2024

Department of Oncology I, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.

Primary and secondary resistance to immune checkpoint blockade (ICB) reduces its efficacy. The mechanisms underlying immunotherapy resistance are highly complex. In non-small cell lung cancer (NSCLC), these mechanisms are primarily associated with the loss of programmed cell death-ligand 1 (PD-L1) expression, genetic mutations, circular RNA axis and transcription factor regulation, antigen presentation disorders, and dysregulation of signaling pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!