Biomimicry applies the fundamental principles of natural materials, processes, and structures to technological applications. This review presents the two strategies of biomimicry-bottom-up and top-down approaches, using biomimetic polymer fibers and suitable spinning techniques as examples. The bottom-up biomimicry approach helps to acquire fundamental knowledge on biological systems, which can then be leveraged for technological advancements. Within this context, we discuss the spinning of silk and collagen fibers due to their unique natural mechanical properties. To achieve successful biomimicry, it is imperative to carefully adjust the spinning solution and processing parameters. On the other hand, top-down biomimicry aims to solve technological problems by seeking solutions from natural role models. This approach will be illustrated using examples such as spider webs, animal hair, and tissue structures. To contextualize biomimicking approaches in practical applications, this review will give an overview of biomimetic filter technologies, textiles, and tissue engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-3190/acddc1 | DOI Listing |
Acta Biomater
January 2025
Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China. Electronic address:
The management of bacterial wounds presents a significant challenge in the field of medicine and poses a grave threat to public health. Traditional gauze materials exhibit limited efficacy in treating bacterial infection wounds, while antibiotics demonstrate cytotoxicity and resistance. Therefore, in this study, the peptide biomimetic polymer (PAL-BA) was designed and served as the antibacterial framework for constructing an antibiotic drug-free antibacterial hydrogel dressing through a Schiff base reaction with oxidized hyaluronic acid (OHA).
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Diagnostic Nanotools Group, Hospital Vall d'Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain.
Prussian blue nanoparticles (PBNPs) have been identified as a promising candidate for biomimetic peroxidase (POD)-like activity, specifically due to the metal centres (Fe/Fe) of Prussian blue (PB), which have the potential to function as catalytically active centres. The decoration of PBNPs with desired functional polymers (such as amino- or carboxylate-based) primarily facilitates the subsequent linkage of biomolecules to the nanoparticles for their use in biosensor applications. Thus, the elucidation of the catalytic POD mimicry of these systems is of significant scientific interest but has not been investigated in depth yet.
View Article and Find Full Text PDFDrug Deliv
December 2025
Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE) Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.
Biopolymers, such as collagens, elastin, silk fibroin, spider silk, fibrin, keratin, and resilin have gained significant interest for their potential biomedical applications due to their biocompatibility, biodegradability, and mechanical properties. This review focuses on the design and integration of biomimetic peptides into these biopolymer platforms to control the release of bioactive molecules, thereby enhancing their functionality for drug delivery, tissue engineering, and regenerative medicine. Elastin-like polypeptides (ELPs) and silk fibroin repeats, for example, demonstrate how engineered peptides can mimic natural protein domains to modulate material properties and drug release profiles.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program (PPGCM), Federal University of Piauí (UFPI), Teresina, PI, Brazil.
Background: The 3D printing of macro- and mesoporous biomimetic grafts composed of polycaprolactone (PCL) infused with nanosized synthetic smectic clay is a promising innovation in biomaterials for bone tissue engineering (BTE). The main challenge lies in achieving a uniform distribution of nanoceramics across low to high concentrations within the polymer matrix while preserving mechanical properties and biological performance essential for successful osseointegration.
Methods: This study utilized 3D printing to fabricate PCL scaffolds enriched with nanosized synthetic smectic clay (LAP) to evaluate its effects on structural, chemical, thermal, mechanical, and degradative properties, with a focus on in vitro biological performance and non-toxicity.
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
Synovial exudation, creeping, and lubrication failure in natural cartilage under a long-term normal loading can be counteracted by a tribo-rehydration (sliding-induced rehydration) phenomenon. Hydrogels, as porous materials, can also restore interfacial lubrication and overcome creep through this strategy. At appropriate sliding velocities, water molecules at the interface contact inlet are driven by hydrodynamic pressures into the porous network to resist creep extrusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!