Preparation and physicochemical properties of nanocellulose lightweight porous materials: The regulating effect of gelatin.

Food Chem

College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing, Southwest University, Ministry of Education, Chongqing 400715, China. Electronic address:

Published: November 2023

AI Article Synopsis

  • The study focuses on creating a lightweight porous material (TOCNF-G-LPM) using TEMPO-oxidized cellulose nanofibril and gelatin, with glutaraldehyde as a crosslinking agent.
  • Increasing the gelatin concentration enhanced the material's porosity (from 98.53% to 97.40%) and decreased its density (from 0.0372 to 0.0236 g/cm³), while also leading to a more organized internal structure.
  • Gelatin addition improved the thermal and mechanical properties of the material, reduced its water and oil absorption, and showed good biocompatibility with no negative effects on the growth of the model organism C. elegans.

Article Abstract

The composite lightweight porous material (TOCNF-G-LPM) based on TEMPO-oxidized cellulose nanofibril (TOCNF) and gelatin were facilely prepared by ambient pressure drying using glutaraldehyde as crosslinking agent. The influence of gelatin addition on the physicochemical properties of TOCNF-G-LPM was investigated. The long-size entangled structure of TOCNF maintained the skeleton network of TOCNF-G-LPM while gelatin can adjust the characteristics of highly porous network (porosity of 98.53%-97.40%) and light weight (density of 0.0236-0.0372 g/cm) with increasing gelatin concentration (0.2-1.0 wt%). The results of scanning electron microscopy (SEM) and confocal laser scanning microscope (CLSM) indicated that the internal structure of TOCNF-G-LPM became more ordered, uniform and denser as gelatin concentration increased. Introducing gelatin decreased water and oil absorption properties, but improved the thermal, mechanical properties and shape recovery ability of TOCNF-G-LPM at appropriate addition. Furthermore, TOCNF-G-LPM showed no significant effect on the growth and reproduction of Caenorhabditis elegans (C. elegans), confirming a good biocompatibility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2023.136497DOI Listing

Publication Analysis

Top Keywords

physicochemical properties
8
lightweight porous
8
gelatin concentration
8
gelatin
7
tocnf-g-lpm
6
preparation physicochemical
4
properties
4
properties nanocellulose
4
nanocellulose lightweight
4
porous materials
4

Similar Publications

Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.

Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.

View Article and Find Full Text PDF

Leishmaniasis is a chronic inflammatory zoonotic illness caused by protozoan flagellates belonging to the genus. Current data suggest that over 1 billion people worldwide are susceptible to infection, primarily in tropical and subtropical countries, where up to 2 million new cases are reported annually. Therefore, the development of a vaccine is crucial to combating this disease.

View Article and Find Full Text PDF

This study presents a novel series of -acylated 1,2,4-triazol-5-amines and 1-pyrazol-5-amines, featuring a pyrazin-2-yl moiety, developed as covalent inhibitors of thrombin. These compounds demonstrated potent inhibitory activity, with derivatives and achieving IC values as low as 0.7 and 0.

View Article and Find Full Text PDF

Packaging films based on natural biopolymers often suffer from inadequate barrier and mechanical properties. To address these challenges, multilayer films have emerged as potential solutions. In this study, we prepared bilayer films using bitter vetch seed protein (BVSP) and polylactic acid (PLA).

View Article and Find Full Text PDF

Steam injection, especially in a superheated state, increases the rate of heat transfer and improves the quality of the baked products. In this research, different baking methods (forced convention, superheated steam, and superheated steam-assisted) at different temperatures (140°C, 160°C, 180°C) were applied to produce a new formulated rice cake containing acorn flour and inulin. The findings revealed that the level of moisture inside the oven directly influences the volume of the cake.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!