Targeting the Hedgehog pathway with novel Gli1 hydrophobic tagging degraders.

Bioorg Chem

Laboratory of Medicinal Chemical Biology, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China. Electronic address:

Published: September 2023

The Hedgehog/Glioma-associated oncogene (Hh/Gli) signaling pathway plays an essential role in embryonic development and tissue homeostasis. Aberrant regulation of this pathway has been linked to various human malignancies. Gli1, the downstream transcription factor of the Hh pathway, is the ultimate effector of the canonical Hh pathway and has been identified as a common regulator of several tumorigenic pathways prevalent in Hh-independent cancers. Thus Gli1 represents a unique and promising drug target for a wide range of cancers. However, the identification and development of small molecules that directly target Gli1 protein have progressed slowly, due to an insufficient efficacy and selectivity. Herein, we developed novel small-molecule Gli1 degraders based on the hydrophobic tagging (HyT) strategy. The Gli1 HyT degrader 8e potently inhibited the proliferation of Gli1-overexpressed HT29 colorectal cancer cells, induced Gli1 degradation with a DC value of 5.4 μM in HT29 and achieved 70% degradation at 7.5 μM in MEF and MEFcell lines, via proteasome pathway. Compared to the canonical Hh antagonist Vismodegib, 8e exhibited much stronger potency in suppressing the mRNA expression of Hh target genes in Hh-overactivated MEF and Vismodegib resistant MEF cells. Our study provides small molecule Gli1 degraders effectively interfering with both canonical and noncanonical Hh signaling and overcoming current Smoothened (SMO) antagonists resistance, which might pave a new avenue for developing therapeutic modalities targeting Hh/Gli1 signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2023.106649DOI Listing

Publication Analysis

Top Keywords

gli1
8
hydrophobic tagging
8
signaling pathway
8
gli1 degraders
8
pathway
7
targeting hedgehog
4
hedgehog pathway
4
pathway novel
4
novel gli1
4
gli1 hydrophobic
4

Similar Publications

Objective: The present study delves into the exploration of diagnostic biomarkers linked with ferroptosis in the context of diabetic nephropathy, unraveling their underlying molecular mechanisms.

Methods: In this study, we retrieved datasets GSE96804 and GSE30529 as the training cohort, followed by screening for Differentially Expressed Genes (DEGs). By intersecting these DEGs with known ferroptosisrelated genes, we obtained the differentially expressed genes related to ferroptosis (DEFGs).

View Article and Find Full Text PDF

Enhancer-driven Shh signaling promotes glia-to-mesenchyme transition during bone repair.

Bone Res

January 2025

Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, Jiangsu Province, China.

Plp1-lineage Schwann cells (SCs) of peripheral nerve play a critical role in vascular remodeling and osteogenic differentiation during the early stage of bone healing, and the abnormal plasticity of SCs would jeopardize the bone regeneration. However, how Plp1-lineage cells respond to injury and initiate the vascularized osteogenesis remains incompletely understood. Here, by employing single-cell transcriptional profiling combined with lineage-specific tracing models, we uncover that Plp1-lineage cells undergoing injury-induced glia-to-MSCs transition contributed to osteogenesis and revascularization in the initial stage of bone injury.

View Article and Find Full Text PDF

Cadmium accumulation in the body can damage a variety of organs and impair their development and functions. In the present study, we investigated the effect of cadmium on the stemness and proliferation of normal bovine mammary epithelial cells (BMECs). Normal bovine mammary epithelial cells treated with cadmium chloride were assessed for the expression of stemness-related proteins and cell proliferation.

View Article and Find Full Text PDF

Recent advances in molecular genetics, particularly in identifying and characterizing genetic abnormalities within mesenchymal neoplasms, have led to a more comprehensive and evolving classification system. Modern technological developments in cytogenetics and next-generation sequencing have enabled the analysis of small clinical samples, expanded our understanding of tumor biology, and improved the diagnostic, prognostic, and predictive precision by identifying targeted genetic alterations, confirming the presence of fusion transcripts, and/or revealing the overexpression of specific genes and their targets. In this review, we focus specifically on the -rearranged enteric tumor, a recent clinicopathological entity that has emerged within the expanding classification of mesenchymal tumors.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) poses a significant challenge in oncology due to its dismal prognosis and limited therapeutic options. In this study, we investigated the role of miR-301a in facilitating crosstalk between the Hedgehog (Hh) and HIPPO/YAP signaling pathways during the progression of PDAC. Our findings revealed that miR-301a served as a central regulatory node, targeting Gli1 within the Hh pathway and STK4 within the HIPPO/YAP pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!