Flowers have a species-specific fertile period during which pollination and fertilization have to occur to initiate seed and fruit development. Unpollinated flowers remain receptive for mere hours in some species, and up to several weeks in others before flower senescence terminates fertility. As such, floral longevity is a key trait subject to both natural selection and plant breeding. Within the flower, the life span of the ovule containing the female gametophyte is decisive for fertilization and the initiation of seed development. Here, we show that unfertilized ovules in undergo a senescence program that generates morphological and molecular hallmarks of canonical programmed cell death processes in the sporophytically derived ovule integuments. Transcriptome profiling of isolated aging ovules revealed substantial transcriptomic reprogramming during ovule senescence, and identified up-regulated transcription factors as candidate regulators of these processes. Combined mutation of three most-up-regulated NAC (NAM, ATAF1/2, and CUC2) transcription factors, NAP/ANAC029, SHYG/ANAC047, and ORE1/ANAC092, caused a substantial delay in ovule senescence and an extension of fertility in Arabidopsis ovules. These results suggest that timing of ovule senescence and duration of gametophyte receptivity are subject to genetic regulation controlled by the maternal sporophyte.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10288574PMC
http://dx.doi.org/10.1073/pnas.2219868120DOI Listing

Publication Analysis

Top Keywords

ovule senescence
12
arabidopsis ovules
8
controlled maternal
8
maternal sporophyte
8
transcription factors
8
senescence
5
ovule
5
fertility loss
4
loss senescing
4
senescing arabidopsis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!