1,3-Diamino-2,4,6-trinitrobenzene (DATB), a nitro aromatic explosive with excellent properties, can be detonated by an electric field. Using first-principles calculation, we have investigated the initial decomposition of DATB under an electric field. In the realm of electric fields, the rotation of the nitro group around the benzene ring will cause deformation of the DATB structure. Furthermore, when an electric field is applied along the [100] or [001] direction, the C4-N10/C2-N8 bonds initiate decomposition due to electron excitation. On the contrary, the electric field along the [010] direction has a weak influence on DATB. These, together with electronic structures and infrared spectroscopy, give us a visual perspective of the energy transfer and the decomposition caused by C-N bond breaking.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.3c01298 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!