Methoxamine (Mox) is a well-known α1-adrenoceptor agonist, clinically used as a longer-acting analogue of epinephrine. 1,2-Mox (NRL001) has been also undergoing clinical testing to increase the canal resting pressure in patients with bowel incontinence. Here we show, that Mox hydrochloride acts as an inhibitor of base excision repair (BER). The effect is mediated by the inhibition of apurinic/apyrimidinic endonuclease APE1. We link this observation to our previous report showing the biologically relevant effect of Mox on BER - prevention of converting oxidative DNA base damage to double-stranded breaks. We demonstrate that its effect is weaker, but still significant when compared to a known BER inhibitor methoxyamine (MX). We further determined Mox's relative at 19 mmol L, demonstrating a significant effect of Mox on APE1 activity in clinically relevant concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.2478/acph-2023-0012DOI Listing

Publication Analysis

Top Keywords

base excision
8
excision repair
8
inhibition apurinic/apyrimidinic
8
apurinic/apyrimidinic endonuclease
8
endonuclease ape1
8
α-adrenoceptor agonist
4
agonist methoxamine
4
methoxamine inhibits
4
inhibits base
4
repair inhibition
4

Similar Publications

Promotion of cellular differentiation and DNA repair potential in brain cancer cells by Shankhpushpi, (Clitoria ternatea L.) with rasayana properties in vitro.

J Ayurveda Integr Med

January 2025

Centre for Ayurvedic Biology, Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India. Electronic address:

Background: Brain ageing is accompanied by the diminution of neuronal plasticity, which is correlated with the inability to respond to loss of memory, various stress-induced stimuli, and increased risk of neurodegenerative disorders. In the recent past, plant based herbal medicines are of interest over synthetic drugs for therapeutic purposes due to lower side effects. The Indian traditional medicine Ayurveda describes several herbal remedies, such as rasayana (elixirs for rejuvenation), to treat many age-related diseases.

View Article and Find Full Text PDF

Altered DNA dynamics at lesion sites are implicated in how DNA repair proteins sense damage within genomic DNA. Using laser temperature-jump (T-jump) spectroscopy combined with cytosine-analog Förster Resonance Energy Transfer (FRET) probes that sense local DNA conformations, we measured the intrinsic dynamics of DNA containing 3 base-pair mismatches recognized in vitro by Rad4 (yeast ortholog of XPC). Rad4/XPC recognizes diverse lesions from environmental mutagens and initiates nucleotide excision repair.

View Article and Find Full Text PDF

Ionizing radiation induces various types of DNA damage, and the reparability and lethal effects of DNA damage differ depending on its spatial density. Elucidating the structure of radiation-induced clustered DNA damage and its repair processes will enhance our understanding of the lethal impact of ionizing radiation and advance progress toward precise therapeutics. Previously, we developed a method to directly visualize DNA damage using atomic force microscopy (AFM) and classified clustered DNA damage into simple base damage clusters (BDCs), complex BDCs and complex double-strand breaks (DSBs).

View Article and Find Full Text PDF

Apurinic/apyrimidinic (AP) sites are endogenous DNA lesions widespread in human cells. Having no nucleobases, they are noncoding and promutagenic. AP site repair is generally initiated through strand incision by AP endonuclease 1 (APE1).

View Article and Find Full Text PDF

Adenomas from individuals with pathogenic biallelic variants in the MUTYH and NTHL1 genes demonstrate base excision repair tumour mutational signature profiles similar to colorectal cancers, expanding potential diagnostic and variant classification applications.

Transl Oncol

January 2025

Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia. Electronic address: https://twitter.com/petergeorgeson.

Background: Colorectal cancers (CRCs) from people with biallelic germline likely pathogenic/pathogenic variants in MUTYH or NTHL1 exhibit specific single base substitution (SBS) mutational signatures, namely combined SBS18 and SBS36 (SBS18+SBS36), and SBS30, respectively. The aim was to determine if adenomas from biallelic cases demonstrated these mutational signatures at diagnostic levels.

Methods: Whole-exome sequencing of FFPE tissue and matched blood-derived DNA was performed on 9 adenomas and 15 CRCs from 13 biallelic MUTYH cases, on 7 adenomas and 2 CRCs from 5 biallelic NTHL1 cases and on 27 adenomas and 26 CRCs from 46 non-hereditary (sporadic) participants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!