This article is devoted to the study of various dielectric and optoelectrical parameters nonlinear optic behaviors, thermal lens and self-diffraction parameters of Fluorescein (FLs) doped polymethyl methacrylate (PMMA) films. The films were prepared with 60 mM. These studies are based on the calculated values of refractive, absorption coefficient, energy gap, extinction coefficient and nonlinear Refraction index . The polymer films were prepared using the casting technique. All samples were previously investigated by UV-Vis-NIR spectrophotometric measurements and Optical microscopy SEM and ATM. Utilizing thermal lens spectrometry, an investigation of the thermo-optical characteristics as well as the nonlinear refractive index was carried out. In this method, a pump beam and a probe beam were brought into collinear alignment with one another. To determination the nonlinear Refraction index . High values of nonlinear refractive index predict a bright future for materials in optical applications. These results indicate that the new dye is a promising candidate for applications in nonlinear optical devices. Investigations were carried out on organic photovoltaic devices in addition to devices consisting of active layers with conducting polymer of PHPP:P3HT film and PHPP:P3HT/Fls. The methods of polymer and dyes synthesis are presented and their physical properties are given.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-023-03299-9DOI Listing

Publication Analysis

Top Keywords

thermal lens
12
organic photovoltaic
8
photovoltaic devices
8
films prepared
8
nonlinear refraction
8
nonlinear refractive
8
nonlinear
6
electrical thermal
4
optical
4
lens optical
4

Similar Publications

Tungsten oxide (WO) electrochromic devices are obtaining increasing interest due to their color change and thermal regulation. However, most previous work focuses on the absorption or transmission spectra of materials, rather than the optical parameters evolution in full spectrum in the electrochromic processes. Herein, we developed a systematic protocol of ex situ methods to clarify the evolutions of subtle structure changes, Raman vibration modes, and optical parameters of WO thin films in electrochromic processes as stimulated by dosage-dependent Li insertion.

View Article and Find Full Text PDF

Interfacial Dripping Faucet: Generating Monodisperse Liquid Lenses.

Phys Rev Lett

December 2024

Carlos III University of Madrid, Thermal and Fluids Engineering Department, Avenida de la Universidad, 30 (Sabatini building), 28911 Leganés (Madrid), Spain.

We present a surface analog to a dripping faucet, where a viscous liquid slides down an immiscible meniscus. Periodic pinch-off of the dripping filament is observed, generating a succession of monodisperse floating lenses. We show that this interfacial dripping faucet can be described analogously to its single-phase counterpart, replacing surface tension by the spreading coefficient, and even undergoes a transition to a jetting regime.

View Article and Find Full Text PDF

In optical imaging of solid tumors, signal contrasts derived from inherent tissue temperature differences have been employed to distinguish tumor masses from surrounding tissue. Moreover, with the advancement of active infrared imaging, dynamic thermal characteristics in response to exogenous thermal modulation (heating and cooling) have been proposed as novel measures of tumor assessment. Contrast factors such as the average rate of temperature changes and thermal recovery time constants have been investigated through an active thermal modulation imaging approach, yielding promising tumor characterization results in a xenograft mouse model.

View Article and Find Full Text PDF

Bioinspired Heterogeneous Surface for Radiative Cooling Enhanced Power-Free Moisture Harvesting in Unsaturated Atmosphere.

Adv Mater

December 2024

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.

The development of zero-power moisture-harvesting technology in an unsaturated atmosphere is of great significance for coping with global freshwater scarcity. Here, inspired by Pachydactylus rangei's (Namib sand gecko) ability to evade thermal radiation and harvest moisture, a power-free cooling moisture harvester (PFCMH) is fabricated using the continuous, industrialized micro-extrusion compression molding. A Luneburg lens is introduced in the PFCMH for the first time, endowing it with a high reflectivity of ≈92.

View Article and Find Full Text PDF

As the trajectory toward the graphene era continues, there is a compelling need to harness 2D technology further for the transformation of three-dimensional (3D) materials production and applications. Here, we resolve this challenge for one of the most widely utilized 3D materials in modern electronics─gold─using graphene-inspired fabrication technology that allows us to develop a multistep production method of ultrathin gold films. Such films demonstrate continuous morphology, low sheet resistance (10 Ω/sq), and high transparency (80%), offering opportunities in a variety of technological and scientific sectors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!