The development of industrial process in line with the circular economy and the environmental, social and corporate governance (ESG) is the foundation for sustainable economic development. Alternatives that make feasible the transformation of residues in added value products are promising and contribute to the repositioning of the industry towards sustainability, due to financial leverage obtained from lesser operational costs when compared with conventional processes, therefore increasing the company competitivity. In this study, it is presented a promising and innovative technology for the recycling of agro-industrial residues, the sugarcane bagasse and the high-pressure water boiler effluent, in the development of a low-cost adsorbent (HC-T) using the hydrothermal carbonization processes and its application in the adsorption of herbicide Diuron and Methylene Blue dye from synthetic contaminated water. The hydrothermal carbonization was performed in a Teflon contained inside a sealed stainless-steel reactor self-pressurized at 200°C, biomass-to-effluent (m/v) ratio of 1:3 and 24 h. The synthesized material (HC) was activated in an oven at 450°C for 10 min, thus being named adsorbent (HC-T) and characterized by textural, structural and spectroscopic analyses. The low-cost adsorbent HC-T presented an 11-time-fold increase in surface area and ∼40% increase in total pore volume in comparison with the HC material. The kinetic and isotherm adsorption experiment results highlighted that the HC-T was effective as a low-cost adsorbent for the removal of herbicide Diuron and Methylene Blue dye from synthetic contaminated waters, with an adsorption capacity of 35.07 (63.25% removal) and 307.09 mg g (36,47% removal), respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2023.2224064DOI Listing

Publication Analysis

Top Keywords

low-cost adsorbent
12
adsorbent hc-t
12
hydrothermal carbonization
8
herbicide diuron
8
diuron methylene
8
methylene blue
8
blue dye
8
dye synthetic
8
synthetic contaminated
8
adsorbent
5

Similar Publications

An increasing amount of water pollution is being caused by an increase in industrial activity. Recently, a wide range of methods, including extraction, chemical coagulation, membrane separation, chemical precipitation, adsorption, and ion exchange, have been used to remove heavy metals from aqueous solutions. The adsorption technique is believed to be the most highly effective method for eliminating heavy metals from wastewater among all of them.

View Article and Find Full Text PDF

Strong coupling FeVO nanoparticles/3D N-doped interconnected porous carbon derived from MOFs by confined adsorption-assembly-pyrolysis for greatly boosting oxygen reduction.

J Colloid Interface Sci

January 2025

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China. Electronic address:

Low-cost and effective electrocatalysts are critical for energy storage and conversion. Herein, iron(III) and vanadium(III) acetylacetonates were first adsorbed and confined in porous zeolitic imidazolate framework-8 (ZIF-8), which further cross-linked together by the methanol-induced-assembly. Following the pyrolysis, the FeVO nanoparticles were efficiently encapsulated within three-dimensional (3D) N-doped interconnected porous carbon, termed FeVO/NIPC.

View Article and Find Full Text PDF

Efficient continuous SF/N separation using low-cost and robust metal-organic frameworks composites.

Nat Commun

January 2025

Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China.

Physisorption presents a promising alternative to cryogenic distillation for capturing the most potent greenhouse gas, SF, but existing adsorbents face challenges in meeting diverse chemical and engineering concerns. Herein, with insights into in-pore chemistry and industrial process design, we report a systematic investigation that constructed two low-cost composites pellets (Al(fum)@2%HPC and Al(fum)@5%Kaolin) coupled with an innovative two-stage Vacuum Temperature Swing Adsorption (VTSA) process for the ultra-efficient recovery of low-concentration SF from N. Record-high selectivities (> 2×10) and SF dynamic capacities (~ 2.

View Article and Find Full Text PDF

The primary goal of the current work was to construct pH-sensitive nano and microcomposite hydrogel beads based on alginate (AL), carboxymethyl cellulose (CMC), biochar (BC), and two Moroccan clays: Ghassoul (swelling SW) and red (not swelling NSW) nano and microhybrid. The adsorbents, SW + AL, SW + AL + BC, SW + AL + CMC, NSW + AL, NSW + AL + BC, NSW + AL + CMC, AL, and AL + CMC were prepared for the adsorption of the antibiotic sulfadiazine (SDZ). The test samples were characterized using a variety of techniques, including X-Ray Diffraction (XRD), IR spectroscopy (FT-IR), and scanning electron microscopy (SEM), with the molecular structures of the studied additives geometrically optimized using the DFT/B3LYP method and the function 6-311G(d).

View Article and Find Full Text PDF

Low-cost Cu2O with a suitable band gap holds great potential for solar utilization. However severe photocorrosion and weak CO2 capture capability have significantly hindered their application in artificial photosynthesis. Herein, polyoxometalate (POM)-etching and in situ growth of metal-organic framework (MOF) can simultaneously incorporate electron-sponge and HKUST protective layer into Cu2O.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!