The limited supply of reducing power restricts the efficient utilization of acetate in Yarrowia lipolytica. Here, microbial electrosynthesis (MES) system, enabling direct conversion of inward electrons to NAD(P)H, was used to improve the production of fatty alcohols from acetate based on pathway engineering. First, the conversion efficiency of acetate to acetyl-CoA was reinforced by heterogenous expression of ackA-pta genes. Second, a small amount of glucose was used as cosubstrate to activate the pentose phosphate pathway and promote intracellular reducing cofactors synthesis. Third, through the employment of MES system, the final fatty alcohols production of the engineered strain YLFL-11 reached 83.8 mg/g dry cell weight (DCW), which was 6.17-fold higher than the initial production of YLFL-2 in shake flask. Furthermore, these strategies were also applied for the elevation of lupeol and betulinic acid synthesis from acetate in Y. lipolytica, demonstrating that our work provides a practical solution for cofactor supply and the assimilation of inferior carbon sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.28465 | DOI Listing |
Foods
January 2025
Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Str. Nowoursynowska 159C, 02-776 Warsaw, Poland.
Oil cakes are biomass wastes created by pressing oil from oilseeds. Their chemical composition (including high fat or protein content, a favorable fatty acid profile, and a high proportion of unsaturated acids) makes them valuable raw materials not only in animal feeding but are increasingly gaining popularity in biotechnological processes. This article examines the possibility of valorizing oil cakes using the lipid fraction extracted from them or their raw form in a two-pot biosynthesis process of GDDL-a cyclic ester with a creamy-peach aroma.
View Article and Find Full Text PDFThorac Cancer
January 2025
Department of Thoracic Surgery and Lung Transplantation, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China.
Background: The mycobiome in the tumor microenvironment of non-smokers with early-stage lung adenocarcinoma (ES-LUAD) has been minimally investigated.
Methods: In this study, we conducted ultra-deep metagenomic and transcriptomic sequencing on 128 samples collected from 46 nonsmoking ES-LUAD patients and 41 healthy controls (HC), aiming to characterize the tumor-resident mycobiome and its interactions with the host.
Results: The results revealed that ES-LUAD patients exhibited fungal dysbiosis characterized by reduced species diversity and significant imbalances in specific fungal abundances.
Bioresour Bioprocess
January 2025
Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
Kaempferol and quercetin possess various biological activities, making them valuable in food and medicine. However, their production via traditional methods is often inefficient. This study aims to address this gap by engineering the yeast Yarrowia lipolytica to achieve high yields of these flavonoids.
View Article and Find Full Text PDFBioresour Technol
January 2025
Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763 Republic of Korea. Electronic address:
Alternative fuels are urgently needed to mitigate greenhouse gas emissions. This study was conducted to recover bioenergy from non-edible feedstock, an oleaginous yeast biomass obtained during fed-batch cultivation of Yarrowia lipolytica. Yeast oil (lipids) was extracted from the harvested biomass and readily converted into biodiesel using the non-catalytic transesterification method.
View Article and Find Full Text PDFBiotechnol J
January 2025
Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
The sesquiterpene (+)-valencene, with its flavor and diverse biological functions, holds promise for applications in the food, fragrance, and pharmaceutical industries. However, the low concentration in nature and high cost of extraction limit its application. This study aimed to construct a microbial cell factory to efficiently produce (+)-valencene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!