Both growth hormone (GH) and gut microbiota play significant roles in diverse physiological processes, but the crosstalk between them is poorly understood. Despite the regulation of GH by gut microbiota, study on GH's influence on gut microbiota is limited, especially on the impacts of tissue specific GH signaling and their feedback effects on the host. In this study, we profiled gut microbiota and metabolome in tissue-specific GHR knockout mice in the liver (LKO) and adipose tissue (AKO). We found that GHR disruption in the liver rather than adipose tissue affected gut microbiota. It changed the abundance of and at phylum level as well as abundance of several genera, such as , , and , without affecting α-diversity. Moreover, the impaired liver bile acid (BA) profile in LKO mice was strongly associated with the change of gut microbiota. The BA pools and 12-OH BAs/non-12-OH BAs ratio were increased in the LKO mice, which was due to the induction of CYP8B1 by hepatic knockout. Consequently, the impaired BA pool in cecal content interacted with gut bacteria, which in turn increased the production of bacteria derived acetic acid, propionic acid, and phenylacetic acid that were possible to participate in the impaired metabolic phenotype of the LKO mice. Collectively, our findings suggested that the liver GH signaling regulates BA metabolism by its direct regulation on CYP8B1, which is an important factor influencing gut microbiota. Our study is significant in exploring gut microbiota modification effects of tissue-specific GH signaling as well as its involvement in gut microbiota-host interaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10262758PMC
http://dx.doi.org/10.1080/19490976.2023.2221098DOI Listing

Publication Analysis

Top Keywords

gut microbiota
36
lko mice
12
gut
11
microbiota
9
growth hormone
8
bile acid
8
microbiota study
8
adipose tissue
8
acid
5
deletion hepatic
4

Similar Publications

Exploring the microbiome-gut-testis axis in testicular germ cell tumors.

Front Cell Infect Microbiol

January 2025

Department of Oncology, Faculty of Medicine, Comenius University, Bratislava and National Cancer Institute, Bratislava, Slovakia.

The microbiome-gut-testis axis has emerged as a significant area of interest in understanding testicular cancer, particularly testicular germ cell tumors (TGCTs), which represent the most common malignancy in young men. The interplay between the gut and testicular microbiomes is hypothesized to influence tumorigenesis and reproductive health, underscoring the complex role of microbial ecosystems in disease pathology. The microbiome-gut-testis axis encompasses complex interactions between the gut microbiome, systemic immune modulation, and the local microenvironment of the testis.

View Article and Find Full Text PDF

The gut barrier encompasses several interactive, physical, and functional components, such as the gut microbiota, the mucus layer, the epithelial layer and the gut mucosal immunity. All these contribute to homeostasis in a well-regulated manner. Nevertheless, this frail balance might be disrupted for instance by westernized dietary habits, infections, pollution or exposure to antibiotics, thus diminishing protective immunity and leading to the onset of chronic diseases.

View Article and Find Full Text PDF

Introduction: The gut microbiota plays a pivotal role in influencing host health, through the production of metabolites and other key signalling molecules. While the impact of specific metabolites or taxa on host cells is well-documented, the broader impact of a disrupted microbiota on immune homeostasis is less understood, which is particularly important in the context of the increasing overuse of antibiotics.

Methods: Female C57BL/6 mice were gavaged twice daily for four weeks with Vancomycin, Polymyxin B, or PBS (control).

View Article and Find Full Text PDF

Synergistic defecation effects of subsp. BL-99 and fructooligosaccharide by modulating gut microbiota.

Front Immunol

January 2025

Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, Department of Nutrition and Health, China Agricultural University, Beijing, China.

Introduction: Synbiotics have revealed the possibility of improving constipation through gut microbiota. The synergistic efficacy of subsp. lactis BL-99 (BL-99) and fructooligosaccharide (FOS) on constipation have not been investigated.

View Article and Find Full Text PDF

Background: Dysbiosis of the lung microbiome can contribute to the initiation and progression of lung cancer. Synchronous multiple primary lung cancer (sMPLC) is an increasingly recognized subtype of lung cancer characterized by high morbidity, difficulties in early detection, poor prognosis, and substantial clinical challenges. However, the relationship between sMPLC pathogenesis and changes in the lung microbiome remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!