Cancer is a major public health problem, and chemotherapy plays a significant role in the management of neoplastic diseases. However, chemotherapy-induced cardiotoxicity is a serious side effect secondary to cardiac damage caused by antineoplastic's direct and indirect toxicity. Currently, there are no reliable and approved methods for preventing or treating chemotherapy-induced cardiotoxicity. Understanding the mechanisms of chemotherapy-induced cardiotoxicity may be vital to improving survival. The independent risk factors for developing cardiotoxicity must be considered to prevent myocardial damage without decreasing the therapeutic efficacy of cancer treatment. This systematic review aimed to identify and analyze the evidence on chemotherapy-induced cardiotoxicity, associated risk factors, and methods to decrease or prevent it. We conducted a comprehensive search on PubMed, Google Scholar, and Directory of Open Access Journals (DOAJ) using the following keywords: "doxorubicin cardiotoxicity", "anthracycline cardiotoxicity", "chemotherapy", "digoxin decrease cardiotoxicity", "ATG7 activators", retrieving 59 articles fulfilling the inclusion criteria. Therapeutic schemes can be changed by choosing prolonged infusion application over boluses. In addition, some agents like Dexrazoxane can reduce chemotherapy-induced cardiotoxicity in high-risk groups. Recent research found that Digoxin, ATG7 activators, Resveratrol, and other medical substances or herbal compounds have a comparable effect on Dexrazoxane in anthracycline-induced cardiotoxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10251384PMC
http://dx.doi.org/10.25122/jml-2022-0322DOI Listing

Publication Analysis

Top Keywords

chemotherapy-induced cardiotoxicity
24
digoxin atg7
8
atg7 activators
8
activators resveratrol
8
risk factors
8
cardiotoxicity
7
chemotherapy-induced
6
cardiotoxicity perspective
4
perspective role
4
role digoxin
4

Similar Publications

Chemotherapy-induced cardiotoxicity is a critical issue in cardio-oncology, as cancer treatments often lead to severe cardiovascular complications. Approximately 10% of cancer patients succumb to cardiovascular problems, with lung cancer patients frequently experiencing arrhythmias, cardiac failure, tamponade, and cardiac metastasis. The cardiotoxic effects of anti-cancer treatments manifest at both cellular and tissue levels, causing deformation of cardiomyocytes, leading to contractility issues and fibrosis.

View Article and Find Full Text PDF

A novel approach to the prevention and management of chemotherapy-induced cardiotoxicity: PANoptosis.

Chem Biol Interact

January 2025

Department of Cardiology, Zhejiang Hospital (Affiliated Zhejiang Hospital, Zhejiang University School of Medicine), Hangzhou, Zhejiang, 310007, China; Zhejiang Key Laboratory of Integrative Chinese and Western Medicine for Diagnosis and Treatment of Circulatory Diseases, Zhejiang Hospital (Affiliated Zhejiang Hospital, Zhejiang University School of Medicine), Hangzhou, Zhejiang, 310007, China; Zhejiang Engineering Research Center for Precise Diagnosis and Innovative Traditional Chinese Medicine for Cardiovascular Diseases, Zhejiang Hospital (Affiliated Zhejiang Hospital, Zhejiang University School of Medicine), Hangzhou, Zhejiang, 310007, China. Electronic address:

As a fundamental component of antitumor therapy, chemotherapy-induced cardiotoxicity (CIC) has emerged as a leading cause of long-term mortality in patients with malignant tumors. Unfortunately, there are currently no effective therapeutic preventive or treatment strategies, and the underlying pathophysiological mechanisms of CIC remain inadequately understood. A growing number of studies have shown that different mechanisms of cell death, such as apoptosis, pyroptosis, and necroptosis, are essential for facilitating the cardiotoxic effects of chemotherapy.

View Article and Find Full Text PDF

Background/objectives: Cardio-oncology has become essential in addressing cardiovascular complications from cancer therapies. While advancements in treatments have improved survival rates, they also increase cardiovascular risks. This study evaluates the cardiotoxic effects of cytostatic treatments, examining the relationship between tumor characteristics, such as histopathology and TNM classification, and cardiovascular complications, aiming to improve cardiotoxicity prevention and management in oncology patients.

View Article and Find Full Text PDF

Cancer remains a predominant global health concern, necessitating effective treatment options. Conventional cancer therapies, particularly chemotherapy, often face constraints such as low selectivity, insufficient solubility, and multidrug resistance (MDR), which diminish effectiveness and exacerbate negative effects. Metal oxide nanoparticles (MONPs), such as iron oxide, zinc oxide, and copper oxide, offer a promising solution by enhancing targeted drug delivery, reducing systemic toxicity, and mitigating chemotherapy-induced disabilities like neurotoxicity and cardiotoxicity.

View Article and Find Full Text PDF

The quest for bioactives that confer protection against chemotherapy induced cardio toxicity is a front-line area of cardio oncology research. Species of genus Morchella have been used in traditional medicine to treat asthma, wound healing, cough, cold, indigestion, excessive phlegm and breathlessness. M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!