AI Article Synopsis

  • Research is focusing on renewable fuels like biodiesel due to the rising costs and unreliability of conventional fuels, with biodiesel being produced from waste cooking oil (WCO) using specific catalysts.
  • A CaO catalyst was synthesized from snail shells and modified with ZnO and TiO, yielding biodiesel from WCO with an impressive success rate—80% for CaO alone and up to 95% with modifications.
  • The study confirmed that optimal conditions for the highest biodiesel production included specific catalyst weight, temperature, methanol-to-oil ratio, and reaction time, indicating that the snail shell-derived catalysts could be a cost-effective alternative to traditional catalysts.

Article Abstract

Currently, research has diverted toward generating renewable fuels due to the unreliable supply and rising cost of conventional fuels. Biodiesel is renewable fuel commonly obtainable via a simple process. Biodiesel was produced via the transterification of waste cooking oil (WCO) using heterogeneous catalysts. The aim of this study was to synthesis a ZnO and TiO-supported CaO catalyst from a snail shell for the transterification of waste cooking palm oil to produce biodiesel. Sol-gel and wet-impregnated methods were adopted to synthesize ZnO and catalyst, respectively. The physicochemical properties of waste cooking oil and biodiesel were characterized in accordance to AOAC and ASTMD standard methods. The FTIR and XRD analyses were carried out to characterize the biodiesel and the prepared catalysts. The result of this study revealed that CaO catalyst derived from snail shall, resulted to a WCO-derived biodiesel yield of 80%. The CaO catalyst modified with ZnO and TiO, further led to an increased biodiesel of 90% and 95%, respectively. The result of this study showed that the optimum conditions associated with highest biodiesel yield over the synthesized catalysts were at 3% catalyst weight, 65 °C, a 6:1 methanol-to-oil ratio and 3-h reaction time. The FTIR spectra also proved successful formation of biodiesel. Biodiesel was successfully synthesized from WCO, and the CaO catalyst synthesized from snail shells and modified with ZnO and TiO, showed potential to substitute for costly catalysts derived from chemical reagents for biodiesel production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10256935PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e16475DOI Listing

Publication Analysis

Top Keywords

cao catalyst
20
waste cooking
16
biodiesel
12
cooking oil
12
catalyst derived
8
derived snail
8
snail shell
8
transterification waste
8
result study
8
biodiesel yield
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!