Objective: MicroRNA-188-5p (miR-188) enhances oncologic progression in various human malignancies. This study aimed to explore its role in colorectal cancer (CRC).
Materials And Methods: Human CRC tissues paired with normal tissues, and several CRC cell lines were utilized. Real-time quantitative PCR was applied to measure the expression of miR-188. Overexpression and knockdown were used to access the function of miR-188 and to investigate whether FOXL1/Wnt signaling mediates such function. The proliferation, migration and invasion of cancer cells were evaluated by CCK8, wound-healing and transwell assays, respectively. Whether FOXL1 acted as a direct target of miR-188 was verified by dual-luciferase reporter assays.
Results: Levels of miR-188 were upregulated in CRC tissues than in paired-normal tissues, as well as in various CRC cell lines. High expression of miR-188 was strongly associated with advanced tumor stage, accompanied with significant tumor cell proliferation, invasion and migration. It was confirmed that FOXL1 played positive crosstalk between miR-188 regulation and downstream Wnt/β-catenin signaling activation.
Conclusions: All findings indicate that miR-188 promotes CRC cell proliferation and invasion through targeting FOXL1/Wnt signaling and could be served as a potential therapeutic target for human CRC in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10207950 | PMC |
http://dx.doi.org/10.32604/or.2022.03178 | DOI Listing |
Arch Toxicol
January 2025
Department of Medicine, University of California, San Diego, CA, 92093, USA.
E-cigarettes (E.cigs) cause inflammation and damage to human organs, including the lungs and heart. In the gut, E.
View Article and Find Full Text PDFCancer Res Commun
January 2025
University of California, San Diego, La Jolla, CA, United States.
Cancer-associated fibroblasts (CAF) generate an extracellular matrix (ECM) which provides a repository for factors that promote pancreatic cancer progression. Here, we establish that CAF contribution to pancreatic tumor initiation, i.e.
View Article and Find Full Text PDFElife
January 2025
Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
Neuromodulators have major influences on the regulation of neural circuit activity across the nervous system. Nitric oxide (NO) has been shown to be a prominent neuromodulator in many circuits and has been extensively studied in the retina. Here, it has been associated with the regulation of light adaptation, gain control, and gap junctional coupling, but its effect on the retinal output, specifically on the different types of retinal ganglion cells (RGCs), is still poorly understood.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
Metabolic reprogramming of tumor cells dynamically reshapes the distribution of nutrients and signals in the tumor microenvironment (TME), affecting intercellular interactions and resulting in metabolic immune suppression. Increased glucose uptake and metabolism are characteristic of many tumors. Meanwhile, the progression of colorectal carcinoma (CRC) relies on lipid metabolism.
View Article and Find Full Text PDFCancer Med
January 2025
Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland.
Background: Immune checkpoint inhibition therapies have provided remarkable results in numerous metastatic cancers, including mismatch repair-deficient (dMMR) colorectal cancer (CRC). To evaluate the potential for PD-1 blockade therapy in a large population-based cohort, we analyzed the tumor microenvironment and reviewed the clinical data and actualized treatment of all dMMR CRCs in Central Finland province between 2000 and 2015.
Material And Methods: Of 1343 CRC patients, 171 dMMR tumors were identified through immunohistochemical screening.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!