This paper presents the first garment capable of measuring brain activity with accuracy comparable to that of state-of-the art dry electroencephalogram (EEG) systems. The main innovation is an EEG sensor layer (i.e., the electrodes, the signal transmission, and the cap support) made entirely of threads, fabrics, and smart textiles, eliminating the need for metal or plastic materials. The garment is connected to a mobile EEG amplifier to complete the measurement system. As a first proof of concept, the new EEG system (Garment-EEG) was characterized with respect to a state-of-the-art Ag/AgCl dry-EEG system (Dry-EEG) over the forehead area of healthy participants in terms of: (1) skin-electrode impedance; (2) EEG activity; (3) artifacts; and (4) user ergonomics and comfort. The results show that the Garment-EEG system provides comparable recordings to Dry-EEG, but it is more susceptible to artifacts under adverse recording conditions due to poorer contact impedances. The textile-based sensor layer offers superior ergonomics and comfort compared to its metal-based counterpart. We provide the datasets recorded with Garment-EEG and Dry-EEG systems, making available the first open-access dataset of an EEG sensor layer built exclusively with textile materials. Achieving user acceptance is an obstacle in the field of neurotechnology. The introduction of EEG systems encapsulated in wearables has the potential to democratize neurotechnology and non-invasive brain-computer interfaces, as they are naturally accepted by people in their daily lives. Furthermore, supporting the EEG implementation in the textile industry may result in lower cost and less-polluting manufacturing processes compared to metal and plastic industries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250743 | PMC |
http://dx.doi.org/10.3389/fnhum.2023.1135153 | DOI Listing |
Biomed Eng Lett
January 2025
MicroSystems Lab (µSL), School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, 110067 India.
This paper demonstrates real-time, label-free, contact-based glucose sensor design of inset-fed Microstrip Patch Antenna (MSPA) genres: Slotted Microstrip Patch Antenna (SMSPA) and Through-hole Microstrip Patch Antenna (THMSPA). In SMSPA, multiple slots are created along the width edge of the patch. In THMSPA, a through-hole is introduced across the antenna including all the layers: patch, substrate and ground conductor of the MSPA.
View Article and Find Full Text PDFLab Chip
January 2025
Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland.
Proteases, an important class of enzymes that cleave proteins and peptides, carry a wealth of potentially useful information. Devices to enable routine and cost effective measurement of their activity could find frequent use in clinical settings for medical diagnostics, as well as some industrial contexts such as detecting on-line biological contamination. In particular, devices that make use of readouts involving magnetic particles may offer distinct advantages for continuous sensing because material they release can be magnetically captured downstream and their readout is insensitive to optical properties of the sample.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Materials & Chemistry Architecture, Anhui Agricultural University, Anhui Healthy Sleep Home Furnishings Engineering Research Center, Hefei 230036, China. Electronic address:
Carbon aerogels, characterized by their high porosity and superior electrical performance, present significant potential for the development of highly sensitive pressure sensors. However, facile and cost-effective fabrication of biomass-based carbon aerogels that concurrently possess high sensitivity, high elasticity, and excellent fatigue resistance remains a formidable challenge. Herein, a piezoresistive sensor with a layered network microstructure (BCNF-rGO-CS) was successfully fabricated using bamboo nanocellulose fiber (BCNF), chitosan (CS), and graphene oxide (GO) as raw materials.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
The commercialization of metasurfaces is crucial for real-world applications such as wearable sensors, pigment-free color pixels, and augmented and virtual reality devices. Nanoparticle-embedded resin-based nanoimprint lithography (PER-NIL) has shown itself to be a low-cost, high-throughput manufacturing method enabling the replication of high-index nanostructures. It has been extensively integrated into the fabrication of hologram metasurfaces, metalenses, and sensors due to its procedural simplicity.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Energy, School of Optoelectronic Science and Engineering, School of Biology and Basic Medical Sciences, School of Physical Science and Technology, Soochow University, Suzhou, 215000, P. R. China.
Human hearing cannot sensitively detect sounds below 100 Hz, which can affect the physical well-being and lead to dizziness, headaches, and nausea. Piezoelectric acoustic sensors still lack sensitivity to low-frequency sounds owing to the low piezoelectric coefficient or high elastic modulus of materials. The low elastic modulus and substantial piezoelectric coefficient of molecular ferroelectric materials make them excellent candidates for acoustic sensors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!