Mandarins are mostly preferred specie of genus, and there has been a continuous rise in consumption and global marketing due to having easy-to-peel, attractive flavor, and fresh consumption advantages. However, most of the existing knowledge on quality traits of citrus fruit comes from research conducted on oranges, which are the main products for the citrus juice manufacturing industry. In recent years, mandarin production in Turkey surpassed orange production and took the first place in citrus production. Mandarins are mostly grown in the Mediterranean and Aegean Regions of Turkey. Due to suitable climatic conditions, they are also grown in the microclimatic condition in Rize province located in the Eastern Black Sea region. In this study, we reported the total phenolic content, total antioxidant capacity, and volatiles of 12 Satsuma mandarin genotypes selected from Rize province of Turkey. Considerable differences in the total phenolic content, total antioxidant capacity (2,2-diphenyl-1-picrylhydrazyl assay), and fruit volatile constituent were found among the 12 selected Satsuma mandarin genotypes. The total phenolic content ranged from 3.50 to 22.53 mg of gallic acid equivalent per 100 g of the fruit sample in the selected mandarin genotypes. The total antioxidant capacity was the highest in genotype HA2 as 60.40%, and followed by IB (59.15%) and TEK3 (58.36%), respectively. A total of 30 aroma volatiles were detected from the juice samples of 12 mandarin genotypes by GC/MS, which comprised six alcohols, three aldehydes (including one monoterpene), three esters, one ketone, and one other volatiles. The main volatile compounds were identified in fruits of all Satsuma mandarin genotypes as α-terpineol (0.6-1.88%), linalool (1.1-3.21%), γ-terpinene (4.41-5.5%), β-myrcene (0.9-1.6%), dl-limonene (79.71-85.12%), α-farnesene (1.1-2.44), and d-germacrene (0.66-1.37%). Limonene accounts for most of the aroma compounds (79.71-85.12%) in fruits of all Satsuma genotypes. The genotypes MP and TEK8 had the highest total phenolic content, and HA2, IB, and TEK 3 had the highest antioxidant capacity. The YU2 genotype was found to contain more aroma compounds than the other genotypes. The genotypes selected on the basis of their high bioactive content could be used to develop new Satsuma mandarin cultivars with high human health promoting contents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10249387PMC
http://dx.doi.org/10.1021/acsomega.3c01364DOI Listing

Publication Analysis

Top Keywords

mandarin genotypes
24
total phenolic
16
phenolic content
16
antioxidant capacity
16
satsuma mandarin
16
total antioxidant
12
genotypes
10
mandarin
8
selected mandarin
8
black sea
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!