In this study, a tertiary composite of graphitic carbon nitride (GCN) with copper and manganese is utilized for photocatalytic degradation to add to efforts for tackling environmental pollution problems. The photocatalytic efficiency of GCN is enhanced with the doping of copper and manganese. This composite is prepared using melamine thermal self-condensation. The formation and characteristics of the composite Cu-Mn-doped GCN are affirmed by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet (UV), and Fourier transform infrared spectroscopy (FTIR). This composite has been used for the degradation of an organic dye (methylene blue (MB)) from water at neutral conditions (pH = 7) of the solution. The percentage photocatalytic degradation of MB by Cu-Mn-doped GCN is higher than that of Cu-GCN and GCN. The prepared composite enhances the degradation of methylene blue (MB) from 5 to 98% under sunlight. The photocatalytic degradation is enhanced owing to the reduction of hole-electron recombination in GCN, enhanced surface area, and extended sunlight utilization by the doped Cu and Mn.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10249025PMC
http://dx.doi.org/10.1021/acsomega.3c00814DOI Listing

Publication Analysis

Top Keywords

photocatalytic degradation
12
tertiary composite
8
copper manganese
8
gcn enhanced
8
cu-mn-doped gcn
8
methylene blue
8
composite
6
gcn
6
degradation
5
synthesis characterization
4

Similar Publications

Carbon dots (CDs) mediated g-CN (CN) is a promising visible-light-driven semiconductor in catalyzing peroxymonosulfate (PMS) for aqueous contaminants remediation. However, the poor dispersibility of powered catalyst and its challenging recyclability impede their broader application. Herein, we embedded FeN bridge within the g-CN framework and immobilized g-CN gel beads (CA/FNCCN) through a 3D cross-linking process with sodium alginate.

View Article and Find Full Text PDF

Insights into the biogenic production of nanocomposites of NiO-chitosan for wastewater remediation.

Int J Biol Macromol

January 2025

Department of Chemistry, Career Point University, Hamirpur Campus, H.P., India; CNST, Career Point University, Hamirpur Campus, H.P., India. Electronic address:

In our study, we have tried to enhance the biological qualities of nickel oxide nanoparticles and nanocomposites which were prepared using the extract of Aegle marmelos tree leaves and chitosan biopolymer. For in-depth study of the fabricated samples, numerous physiochemical approaches were utilized. The analysis used consists of field emission scanning electron microscopy with energy dispersive X-ray analysis and photoluminescence, X-ray diffraction, UV-visible spectroscopy, and Fourier transform infrared spectroscopy.

View Article and Find Full Text PDF

Thermal decomposition synthesis of CuO on TiO NTs as promising photocatalysts for effective photoelectrocatalytic hydrogen evolution and pollutant removal.

Environ Res

January 2025

College of Civil Engineering, Hefei University of Technology, Hefei, 238000, China; Chinaland Solar Energy Co., Ltd., Hefei, 238000, China. Electronic address:

The preparation strategy is the important factor to obtain the effective photocatalyst, and the thermal decomposition could be used to prepare photocatalysts with high crystallinity and photoactivity. In this paper, thermal decomposition method was used to deposit CuO nanoparticles on TiO nanotube arrays (TiO NTs), and the TiO NTs/CuO exhibited remarkably high visible light absorption and photoelectrocatalytic performances toward dye degradation and Cr(VI) reduction. The potential degradation pathway and toxicities of rhodamine B (RhB) dyes and intermediates were investigated.

View Article and Find Full Text PDF

How to improve the stability and activity of metal-organic frameworks is an attractive but challenging task in energy conversion and pollutant degradation of metal-organic framework materials. In this paper, a facile method is developed by fabricating titanium dioxide nanoparticles (TiO NPs) layer on 2D copper tetracarboxylphenyl-metalloporphyrin metal-organic frameworks with zinc ions as the linkers (ZnTCuMT-X, "Zn" represented zinc ions as the linkers, the first "T" represented tetracarboxylphenyl-metalloporphyrin (TCPP), "Cu" represented the Cu coordinated into the porphyrin macrocycle, "M" represented metal-organic frameworks, the second "T" represented TiO NPs layer, and "X" represented the added volume of n-tetrabutyl titanate (X = 100, 200, 300 or 400)). It is found that the optimized ZnTCuMT-200 showed greatly and stably enhanced H generation, which is ≈28.

View Article and Find Full Text PDF

Porous supramolecular crystalline materials (PSCMs), usually including hydrogen-bonded organic frameworks (HOFs), π frameworks, and so on, can be defined as a type of porous supramolecular assemblies stabilized by hydrogen-bonding, π-π stacking and other non-covalent interactions. Given the unique features of mild synthetic conditions, well-defined and tailorable structures, easy healing and regeneration, PSCMs have captured widespread interest in molecular recognition, sensor, gas storage and separation, and so on. Moreover, they currently emerge as promising photocatalysts because it is readily to endow PSCMs with photo-function, and the hydrogen-bonding and π-π stacking can serve as electron transfer channels to boost photocatalytic activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!