TiO has been identified as a promising electron transport layer in Si solar cells. Experiments have revealed that the Si:TiO interface undergoes structural changes depending on how it was fabricated. However, less is understood about the sensitivity of electronic properties, such as band alignments, to these changes. Here, we present first-principles calculations of band alignments between Si and anatase TiO, investigating different surface orientations and terminations. By calculating vacuum-level alignments, we observe a large band offset reduction of 2.5 eV for the O-terminated Si slab compared to other terminations. Furthermore, a 0.5 eV increase is found for the anatase (101) surface compared to (001). We compare the band offsets obtained through vacuum alignment with four different heterostructure models. Even though the heterostructure models contain an excess of oxygen, their offsets agree well with vacuum-level alignments using stoichiometric or H-terminated slabs, and the reduction in band offsets seen for the O-terminated Si slab is not observed. Additionally, we have investigated different exchange-correlation treatments including PBE + U, postprocessing corrections, and the meta-GGA rSCAN functional. We find that rSCAN provides more accurate band offsets than PBE, but further corrections are still required to achieve <0.5 eV accuracy. Overall, our study quantifies the importance of surface termination and orientation for this interface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10249118 | PMC |
http://dx.doi.org/10.1021/acsomega.3c02865 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!