A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Study on the Difference in CO and Air Injection in the Fracture/Matrix Dual Medium of Continental Shale Reservoirs. | LitMetric

To clarify the impact of different displacement media on the enhanced oil recovery of continental shale and realize the efficient and reasonable development of shale reservoirs, this paper takes the continental shale of the Lucaogou Formation in the Jimusar Sag in the Junggar Basin (China, Xinjiang) as the research object and uses real cores to build the fracture/matrix dual-medium model. Computerized tomography (CT) scanning is used to visually compare and analyze the influence of fracture/matrix dual-medium and single-matrix medium seepage systems on oil production characteristics and clarify the difference between air and CO in enhancing the oil recovery of continental shale reservoirs. Through a comprehensive analysis of the production parameters, the whole oil displacement process can be divided into three stages: the oil-rich and gas-poor stage, oil and gas coproduction stage, and gas-rich and oil-poor stage. Shale oil production follows the rule of fractures first and matrix second. However, for CO injection, after the crude oil in the fractures is recovered, the oil in the matrix migrates to the fractures under the action of CO dissolution and extraction. Overall, the oil displacement effect of CO is better than that of air, resulting in a 5.42% higher final recovery factor. Additionally, fractures can increase the permeability of the reservoir, which can greatly enhance oil recovery in the early oil displacement process. However, as the amount of injected gas increases, its impact gradually decreases, and ultimately, it is consistent with the recovery of nonfractured shale, which can achieve nearly the same development effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10249074PMC
http://dx.doi.org/10.1021/acsomega.3c02216DOI Listing

Publication Analysis

Top Keywords

continental shale
16
shale reservoirs
12
oil recovery
12
oil displacement
12
oil
11
difference air
8
recovery continental
8
fracture/matrix dual-medium
8
oil production
8
displacement process
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!