A Theoretical Study of Solvent Effects on the Structure and UV-vis Spectroscopy of 3-Hydroxyflavone (3-HF) and Some Simplified Molecular Models.

ACS Omega

Área de Química-Física, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas, 06006 Badajoz, Spain.

Published: June 2023

Solvent effects on the UV-vis spectra of 3-hydroxyflavone and other structurally related molecules (3-hydroxychromen-4-one, 3-hydroxy-4-pyrone, and 4-pyrone) have been studied by combining time-dependent density functional theory (TDDFT) and the polarizable continuum method (PCM). Among the first five excited states of the four considered molecules, electronic states of n → π* and π → π* nature appear. In general, the stability of the n → π* states decreases as the π space becomes larger in such a way that only for 4-pyrone and 3-hydroxy-4-pyrone are they the first excited states. In addition, they become less stabilized in ethanol solution than the ground state, and this causes blueshift transitions in solution. The opposite trend is found for the π → π* excited states. They are less energetic with the π-system size and when passing from gas phase to solution. The solvent shift also depends strongly on the size of the π systems and on the formation of an intramolecular hydrogen bond; thus, it decreases when going from 4-pyrone to 3-hydroxyflavone. The performance of the three versions (cLR, cLR, and IBSF) of the specific-state PCM method in predicting transition energies are compared.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10249394PMC
http://dx.doi.org/10.1021/acsomega.3c01906DOI Listing

Publication Analysis

Top Keywords

→ π*
16
excited states
12
solvent effects
8
states
5
theoretical study
4
study solvent
4
effects structure
4
structure uv-vis
4
uv-vis spectroscopy
4
spectroscopy 3-hydroxyflavone
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!