Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Polyelectrolyte multilayers are nanofilms with vast applications in numerous areas such as medicine and food industry. Recently, they have been getting a lot of attention as potential food coatings for the prevention of fruit decay during transportation and storage, and therefore the coatings need to be biocompatible. In this study, we fabricated thin films made of biocompatible polyelectrolytes, positively charged polysaccharide chitosan, and negatively charged carboxymethyl cellulose on a model silica surface. Typically, to enhance the properties of the prepared nanofilms, the first layer (precursor layer) of poly(ethyleneimine) is used. However, for the construction of completely biocompatible coatings, this could be problematic due to potential toxicity. This study offers an option for a viable candidate as a replacement precursor layer: chitosan itself was adsorbed from a more concentrated solution. In the case of chitosan/carboxymethyl cellulose films, using chitosan over poly(ethyleneimine) as a precursor layer has shown a twofold increase in film thickness, as well as an increase in film roughness. In addition, these properties can be tuned by the presence of a biocompatible background salt (e.g., sodium chloride) in the deposition solution that has proven to change the film thickness and surface roughness depending on the salt concentration. Such a straightforward way of tuning the properties of these films combined with their biocompatibility makes this precursor material a prime candidate for use as a potential food coating.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10249384 | PMC |
http://dx.doi.org/10.1021/acsomega.3c02281 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!