Recently, the combination of chemotherapy and chemodynamic therapy (CDT) has become a desirable strategy in the treatment of cancer. However, a satisfactory therapeutic outcome is often difficult to achieve due to the deficiency of endogenous HO and O in the tumor microenvironment. In this study, a CaO@DOX@Cu/ZIF-8 nanocomposite was prepared as a novel nanocatalytic platform to enable the combination of chemotherapy and CDT in cancer cells. The anticancer drug doxorubicin hydrochloride (DOX) was loaded onto calcium peroxide (CaO) nanoparticles (NPs) to form CaO@DOX, which was then encapsulated in a copper zeolitic imidazole ester MOF (Cu/ZIF-8) to form CaO@DOX@Cu/ZIF-8 NPs. In the mildly acidic tumor microenvironment, CaO@DOX@Cu/ZIF-8 NPs rapidly disintegrated, releasing CaO, which reacted with water to generate HO and O in the tumor microenvironment. The ability of CaO@DOX@Cu/ZIF-8 NPs to combine chemotherapy and CDT was assessed by conducting cytotoxicity, living dead staining, cellular uptakes, H&E staining, and TUNEL assays in vitro and in vivo. The combination of chemotherapy and CDT of CaO@DOX@Cu/ZIF-8 NPs had a more favorable tumor suppression effect than the nanomaterial precursors, which were not capable of the combined chemotherapy/CDT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10249029PMC
http://dx.doi.org/10.1021/acsomega.3c00269DOI Listing

Publication Analysis

Top Keywords

cao@dox@cu/zif-8 nps
16
combination chemotherapy
12
tumor microenvironment
12
chemotherapy cdt
12
nanocatalytic platform
8
cao@dox@cu/zif-8
5
nps
5
development cu/zif-8
4
cu/zif-8 mof
4
mof acid-sensitive
4

Similar Publications

Metal-organic framework (MOF) based substrates have great potential for quantitative analysis of hazardous substances using surface-enhanced Raman spectroscopy (SERS) due to their significant signal enhancement, but face challenges like complex preparation, and lack of tunability. Here, we have successfully prepared a well-defined core-satellite superstructure (ZIF-8@Ag) through solvent-induced assembly of silver nanoparticles (Ag NPs) on truncated rhombic dodecahedral ZIF-8. By wisely selecting toluene as the solvent, the assembly process can be easily initiated through ultrasonic treatment and it allows for precise morphological adjustments to build a range of superstructures with different assembly densities of Ag NPs feed ratio tuning.

View Article and Find Full Text PDF

The transition metal single atoms (SAs)-based catalysts with M-N coordination environment have shown excellent performance in electrocatalytic reduction of CO, and they have received extensive attention in recent years. However, the presence of SAs makes it very difficult to efficiently improve the coordination environment. In this paper, a method of direct high-temperature pyrolysis carbonization of ZIF-8 adsorbed with Ni and Fe ions is reported for the synthesis of Ni SAs and FeN nanoparticles (NPs) supported by the N-doped carbon (NC) hollow nanododecahedras (HNDs) with nanotubes (NTs) on the surface (Ni SAs/FeN NPs@NC-HNDs-NTs).

View Article and Find Full Text PDF

Construction of enzyme-MOFs composite with carbon dots: A strategy to enhance the activity and increase the growth rate of the enzyme-ZIF-8 composite.

Int J Biol Macromol

January 2025

Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; School of Pharmacy, Southwest Medical University, Luzhou 646000, China. Electronic address:

Encapsulating enzymes in metal-organic frameworks (MOFs) enhances enzyme protection and improves the accuracy of inhibitor recognition and screening. Zeolitic imidazolate framework-8 (ZIF-8) has been widely used as a host matrix for enzyme immobilization. However, challenges such as the microporous structure and hydrophobicity of ZIF-8, along with the protonation of 2-methylimidazole, hinder the maintenance of activity and the rapid formation of composite.

View Article and Find Full Text PDF

Multifunctional metal-organic frameworks with photothermal-triggered nitric oxide release for gas/photothermal synergistic cancer therapy.

J Colloid Interface Sci

January 2025

Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210008 China. Electronic address:

Photothermal therapy (PTT) utilizing cyanine dyes (Cy) and nitric oxide (NO) gas therapy via BNN6 have demonstrated significant potential in cancer treatment. However, the rapid clearance of these small molecules from the body limits their accumulation at tumor sites, thereby reducing therapeutic efficacy. To address this, we employed the acid-sensitive nanomaterial ZIF-8 as a carrier to encapsulate Cy and BNN6, creating functionalized BNN6-Cy@ZIF-8 Nanoparticles (B-C@Z NPs) for the targeted delivery and release of Cy and BNN6 at tumor sites.

View Article and Find Full Text PDF

A Zeolitic Imidazolate Framework-Based Antimicrobial Peptide Delivery System with Enhanced Anticancer Activity and Low Systemic Toxicity.

Pharmaceutics

December 2024

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.

Background: The clinical efficacies of anticancer drugs are limited by non-selective toxic effects on healthy tissues and low bioavailability in tumor tissue. Therefore, the development of vehicles that can selectively deliver and release drugs at the tumor site is critical for further improvements in patient survival.

Methods: We prepared a CEC nano-drug delivery system, CEC@ZIF-8, with a zeolite imidazole framework-8 (ZIF-8) as a carrier, which can achieve the response of folate receptor (FR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!