A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Towards compact laser-driven accelerators: exploring the potential of advanced double-layer targets. | LitMetric

The interest in compact, cost-effective, and versatile accelerators is increasing for many applications of great societal relevance, ranging from nuclear medicine to agriculture, pollution control, and cultural heritage conservation. For instance, Particle Induced X-ray Emission (PIXE) is a non-destructive material characterization technique applied to environmental analysis that requires MeV-energy ions. In this context, superintense laser-driven ion sources represent a promising alternative to conventional accelerators. In particular, the optimization of the laser-target coupling by acting on target properties results in an enhancement of ion current and energy with reduced requirements on the laser system. Among the advanced target concepts that have been explored, one appealing option is given by double-layer targets (DLTs), where a very low-density layer, which acts as an enhanced laser absorber, is grown to a thin solid foil. Here we present some of the most recent results concerning the production with deposition techniques of advanced DLTs for laser-driven particle acceleration. We assess the potential of these targets for laser-driven ion acceleration with particle-in-cell simulations, as well as their application to PIXE analysis of aerosol samples with Monte Carlo simulations. Our investigation reports that MeV protons, accelerated with a ∼20 TW compact laser and optimized DLTs, can allow performing PIXE with comparable performances to conventional sources. We conclude that compact DLT-based laser-driven accelerators can be relevant for environmental monitoring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10250455PMC
http://dx.doi.org/10.1140/epjti/s40485-023-00102-8DOI Listing

Publication Analysis

Top Keywords

laser-driven accelerators
8
double-layer targets
8
laser-driven ion
8
compact
4
compact laser-driven
4
accelerators
4
accelerators exploring
4
exploring potential
4
potential advanced
4
advanced double-layer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!