Background: The use of a deceased donor (DD) as an alternative source of human mesenchymal stromal cells (hMSC) is promising, but has been little explored. This study evaluated the potential of femur bone marrow (FBM) from brain-death donors as a source of hMSC and compared this with hMSC from matched iliac crest bone marrow (ICBM).
Methods: Sixteen donor-matched FBM and ICBM samples were processed from brain-death donors. We analyzed the starting material and compared cell yield, phenotypic profile and differentiation capacity of hMSC.
Results: Neither the amount of nucleated cells per gram (14.6×10±10.3×10 from FBM 38.8×10±34.6×10 from ICBM, P≥0.09) nor the frequency of CFU-F (0.0042%±0.0036% in FBM 0.0057%±0.0042% in ICBM, P≥0.73) differ significantly from FBM or ICBM. Cell cultures from both sources were obtained and hMSC yields showed that there were no significant differences in hMSC obtained per gram of bone marrow (BM) when comparing femur with iliac crest samples. At passage 2, 12.5×10±12.9×10 and 5.0×10±4.4×10 hMSC per gram of BM were obtained from FBM and ICBM, respectively. FBM and ICBM hMSC express CD73, CD90, CD105, but not hematopoietic lineage markers [CD45, CD34, CD11, CD19 and isotype of HLA clase II (HLA-DR)]. HLA-A expression from both sources was clearly detected, while HLA-B was weakly expressed or undetectable and HLA-DR was undetectable. Cells from both sources were differentiated into osteoblasts, adipocytes and chondroblasts.
Conclusions: To our knowledge, there are no previous studies evaluating BM from femur dead donors as a source of hMSC. Our findings confirm that it is feasible to expand cells from FBM from brain-death donors meeting characteristics of hMSC, making them a promising source for clinical translation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10248827 | PMC |
http://dx.doi.org/10.21037/sci-2023-003 | DOI Listing |
Anal Chem
January 2025
Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China.
Multiple myeloma is a hematologic malignancy characterized by the proliferation of abnormal plasma cells in the bone marrow. Despite therapeutic advancements, there remains a critical need for reliable, noninvasive methods to monitor multiple myeloma. Circulating plasma cells (CPCs) in peripheral blood are robust and independent prognostic markers, but their detection is challenging due to their low abundance.
View Article and Find Full Text PDFBlood
January 2025
Division of Immunology and Allergy, Children's Hospital of Philadelphia; Department of Pediatrics, Perelman School of Medicine; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.
Leukopoiesis is lethally arrested in mice lacking the master transcriptional regulator PU.1. Depending on the animal model, subtotal PU.
View Article and Find Full Text PDFSci Immunol
January 2025
Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA.
Understanding how intratumoral immune populations coordinate antitumor responses after therapy can guide treatment prioritization. We systematically analyzed an established immunotherapy, donor lymphocyte infusion (DLI), by assessing 348,905 single-cell transcriptomes from 74 longitudinal bone marrow samples of 25 patients with relapsed leukemia; a subset was evaluated by both protein- and transcriptome-based spatial analysis. In acute myeloid leukemia (AML) DLI responders, we identified clonally expanded CD8 cytotoxic T lymphocytes with in vitro specificity for patient-matched AML.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
Immunologic bile duct destruction is a pathogenic condition associated with vanishing bile duct syndrome (VBDS) after liver transplantation and hematopoietic stem-cell transplantation. As the bile acid receptor sphingosine 1-phosphate receptor 2 (S1PR2) plays a critical role in recruitment of bone marrow-derived monocytes/macrophages to sites of cholestatic liver injury, S1PR2 expression was examined using cultured macrophages and patient tissues. Bile canaliculi destruction precedes intrahepatic ductopenia; therefore, we focused on hepatocyte S1PR2 and the downstream RhoA/Rho kinase 1 (ROCK1) signaling pathway and bile canaliculi alterations using three-dimensional hepatocyte culture models that form obvious bile canaliculus-like networks.
View Article and Find Full Text PDFPLoS One
January 2025
School of Clinical Medicine, Guizhou Medical University, Guiyang, China.
Legg-Calvé-Perthes disease (LCPD) involves femoral head osteonecrosis caused by disrupted blood supply, leading to joint deformity and early osteoarthritis. This study investigates the role of miRNA-223-5p in regulating hypoxia-induced apoptosis and enhancing osteogenesis in bone marrow mesenchymal stem cells (BMSCs). Utilizing a juvenile New Zealand white rabbit model of LCPD established through femoral neck ligation, we transfected BMSCs with miR-223-5p mimics, inhibitors, and controls, followed by hypoxic exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!