A comparative study was performed to estimate biogas production from sludge produced by organic and inorganic chemically enhanced primary treatments (CEPTs). To this end, the effects of two coagulants, polyaluminum chloride (PACl) and (MO), on CEPT and biogas production in anaerobic digestion were surveyed within an incubation period of 24 days. The optimal dosage and pH of PACl and MO were optimized in terms of sCOD, TSS and VS parameters in the CEPT process. Next, the digestion performance of anaerobic digestion reactors fed with sludge obtained from PACl and MO coagulants at a batch mesophilic reactor (37 ± 1 °C) was surveyed from the biogas production, volatile solid reduction (VSR) and Gompertz model. At the optimal conditions (pH = 7 and dosage = 5 mg L), the removal efficiency of COD, TSS and VS in CEPT assisted with PACL was 63, 81 and 56%, respectively. Moreover, CEPT assisted with MO led to the removal efficiency of COD, TSS and VS until 55, 68 and 25%, respectively. The highest methane yield (0.598 L g) was obtained in an anaerobic digestion reactor with sludge from the MO coagulant. The anaerobic digestion of CEPT sludge instead of primary sludge resulted in higher sCOD removal efficiency, and 43-50% of sCOD was observed compared with the removal of 32% for the primary sludge. Furthermore, the high coefficient of determination () demonstrated the trustworthy predictive precision of the modified Gompertz model with actual data. The combination of CEPT and anaerobic digestion, especially using natural coagulants, provides a cost-effective and practical way to increase BMP from primary sludge.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10251396PMC
http://dx.doi.org/10.1039/d3ra02112bDOI Listing

Publication Analysis

Top Keywords

anaerobic digestion
24
biogas production
16
gompertz model
12
removal efficiency
12
primary sludge
12
comparative study
8
polyaluminum chloride
8
chloride pacl
8
chemically enhanced
8
enhanced primary
8

Similar Publications

Anaerobic gut fungi (AGF) were the last phylum to be identified within the rumen microbiome and account for 7-9% of microbial biomass. They produce potent lignocellulases that degrade recalcitrant plant cell walls, and rhizoids that can penetrate the cuticle of plant cells, exposing internal components to other microbiota. Interspecies H transfer between AGF and rumen methanogenic archaea is an essential metabolic process in the rumen that occurs during the reduction of CO to CH by methanogens.

View Article and Find Full Text PDF

Nanobubble water (NBW) or temperature-phased anaerobic digestion assisted by microbial electrolysis cell (MEC-TPAD) can promote sludge hydrolysis and methanogenesis. However, the role of the combined application of NBW and MEC-TPAD in terms of anaerobic performance and related microbial properties remains unclear. This study investigated the impact of Air-NBW on hydrolysis and methanogenesis of dewatered sludge MEC-TPAD.

View Article and Find Full Text PDF

Impact of carrier capacitance on Geobacter enrichment and direct interspecies electron transfer under anaerobic conditions.

Bioresour Technol

January 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090 China. Electronic address:

Direct interspecies electron transfer (DIET) enhances anaerobic digestion by facilitating electron exchange between electroactive bacteria and methanogenic archaea. While Geobacter species are recognized for donating electrons to methanogens via DIET, they are rarely detected in mixed microbial communities. This study examined various non-electrode biological carriers (zeolite, carbon cloth, activated carbon and biochar) to promote Geobacter cultivation under anaerobic conditions and identify pivotal factors influencing their symbiosis with methanogens.

View Article and Find Full Text PDF

Viral auxiliary roles in hydrolytic and biosynthetic metabolism regulate prokaryotic microbial interactions in anaerobic digestion.

Water Res

January 2025

MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China. Electronic address:

Anaerobic digestion (AD) viruses have gained recognition as significant regulators of microbial interactions within AD communities, yet their ecological roles remain largely unexplored. In this study, we investigated the ecological roles of AD viruses in regulating microbial interactions among syntrophic hosts. We recovered 3921 diverse viral sequences from four full-scale anaerobic digesters and confirmed their widespread presence across 127 global metagenomic sampling sites (with >95 % sequence similarity), underscoring the ubiquity of prokaryotic viruses in AD-related systems.

View Article and Find Full Text PDF

Decipher syntrophies and adaptive response towards enhancing conversion of propionate to methane under psychrophilic condition.

Water Res

January 2025

Laboratory of Biomass Bio-chemical Conversion, Guang Zhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China. Electronic address:

Propionate is a key intermediate in anaerobic digestion (AD) under low operational temperatures, which can destabilize the process. In this study, the supplementation of syntrophic cold-tolerant consortia and trace elements significantly improved the performance of psychrophilic (20 °C) reactor, increasing methane production to 91 % of mesophilic reactor levels and reducing propionate concentrations to less than 2 % of those in untreated psychrophilic reactors. Multi-omics analyses revealed that psychrophilic conditions downregulated the methylmalonyl-CoA and aceticlastic methanogenesis pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!