Synthesis of polysiloxane elastomers modified with sulfonyl side groups and their electromechanical response.

J Mater Chem C Mater

Laboratory for Functional Polymers Swiss Federal Laboratories for Materials Science and Technology Empa Überlandstrasse 129 Dübendorf CH-8600 Switzerland

Published: June 2023

Dielectric elastomer transducers are elastic capacitors that respond to mechanical or electrical stress. They can be used in applications such as millimeter-sized soft robots and harvesters of the energy contained in ocean waves. The dielectric component of these capacitors is a thin elastic film, preferably made of a material having a high dielectric permittivity. When properly designed, these materials convert electrical energy into mechanical energy and , as well as thermal energy into electrical energy and vice versa. Whether a polymer can be used for one or the other application is determined by its glass transition temperature (), which should be significantly below room temperature for the former and around room temperature for the latter function. Herein, we report a polysiloxane elastomer modified with polar sulfonyl side groups to contribute to this field with a powerful new material. This material has a dielectric permittivity as high as 18.4 at 10 kHz and 20 °C, a relatively low conductivity of 5 × 10 S cm, and a large actuation strain of 12% at an electric field of 11.4 V μm (0.25 Hz and 400 V). At 0.5 Hz and 400 V, the actuator showed a stable actuation of 9% over 1000 cycles. The material exhibited a of -13.6 °C, which although is well below room temperature affected the material's response in actuators, which shows significant differences in the response at different frequencies and temperatures and in films with different thicknesses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10249063PMC
http://dx.doi.org/10.1039/d3tc00200dDOI Listing

Publication Analysis

Top Keywords

room temperature
12
sulfonyl side
8
side groups
8
dielectric permittivity
8
electrical energy
8
temperature room
8
energy
5
synthesis polysiloxane
4
polysiloxane elastomers
4
elastomers modified
4

Similar Publications

Unipolar Barrier Photodetectors Based on Van Der Waals Heterostructure with Ultra-High Light On/Off Ratio and Fast Speed.

Adv Sci (Weinh)

January 2025

Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China.

Unipolar barrier architecture is designed to enhance the photodetector's sensitivity by inducing highly asymmetrical barriers, a higher barrier for blocking majority carriers to depressing dark current, and a low minority carrier barrier without impeding the photocurrent flow through the channel. Depressed dark current without block photocurrent is highly desired for uncooled Long-wave infrared (LWIR) photodetection, which can enhance the sensitivity of the photodetector. Here, an excellent unipolar barrier photodetector based on multi-layer (ML) graphene (G) is developed, WSe, and PtSe (G-WSe-PtSe) van der Waals (vdW) heterostructure, in which extremely low dark current of 1.

View Article and Find Full Text PDF

An ultrafast algorithm for ultrafast time-resolved coherent Raman spectroscopy.

Commun Chem

January 2025

Energy & Materials Transition, Netherlands Organization for Applied Scientific Research (TNO), Urmonderbaan 22, Geleen, 6167RD, The Netherlands.

Time-resolved coherent Raman spectroscopy (CRS) is a powerful non-linear optical technique for quantitative, in-situ analysis of chemically reacting flows, offering unparalleled accuracy and exceptional spatiotemporal resolution. Its application to large polyatomic molecules, crucial for understanding reaction dynamics, has thus far been limited by the complexity of their rotational-vibrational Raman spectra. Progress in developing comprehensive spectral codes for these molecules, a longstanding goal, has been hindered by prohibitively long computation times required for their spectral synthesis.

View Article and Find Full Text PDF

Polyamide/silica/sodium alginate in-situ composite: Synthesis and application in electrochemical probing for Pb/Cd.

Int J Biol Macromol

January 2025

College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China; Engineering Research Center of Oilfield Chemistry, Ministry of Education, Chengdu 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, PR China. Electronic address:

In this study, polyamide/silica/sodium alginate (SA) composite (PA-Si-SA) was successfully prepared in one-step benzoxazine-isocyanide chemistry (BIC)/sol-gel process at room temperature. The chemical structure and fundamental properties of PA-Si-SA were characterized by FT-IR, solid-state C NMR, XPS, XRD, SEM, BET and TG, etc. The presence of anionic SA and diverse N, O-containing functional segments (amide, tertiary amine, alkyl/phenol -OH, Si-O-Si, and COO) in PA-Si-SA endows it synergistic complexation capability toward Pb and Cd.

View Article and Find Full Text PDF

CO2-driven Oxygen Vacancy Diffusion and Healing on TiO2(110) at Ambient Pressure.

Angew Chem Int Ed Engl

January 2025

KAIST - Korea Advanced Institute of Science and Technology, Department of Chemistry, Center for Nanomaterials and Chemical Reaction, IBS, 373-1, Guseong Dong, Yuseong Gu, 305-701, Daejeon, KOREA, REPUBLIC OF.

Understanding how TiO2 interacts with CO2 at the molecular level is crucial in the CO2 reduction toward value-added energy sources. Here, we report in-situ observations of the CO2 activation process on the reduced TiO2(110) surface at room temperature using ambient pressure scanning tunneling microscopy. We found that oxygen vacancies (Vo) diffuse dynamically along the bridging oxygen (Obr) rows of the TiO2(110) surface under ambient CO2(g) environments.

View Article and Find Full Text PDF

The coherent spin waves, magnons, can propagate without accompanying charge transports and Joule heat dissipation. Room-temperature and long-distance spin waves propagating within nanoscale spin channels are considered promising for integrated magnonic applications, but experimentally challenging. Here we report that long-distance propagation of chiral magnonic edge states can be achieved at room temperature in manganite thin films with long, antiferromagnetically coupled spin spirals (millimetre length) and low magnetic Gilbert damping (~3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!