A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automatic measurement of kidney dimensions in two-dimensional ultrasonography is comparable to expert sonographers. | LitMetric

Purpose: Length and width measurements of the kidneys aid in the detection and monitoring of structural abnormalities and organ disease. Manual measurement results in intra- and inter-rater variability, is complex and time-consuming, and is fraught with error. We propose an automated approach based on machine learning for quantifying kidney dimensions from two-dimensional (2D) ultrasound images in both native and transplanted kidneys.

Approach: An nnU-net machine learning model was trained on 514 images to segment the kidney capsule in standard longitudinal and transverse views. Two expert sonographers and three medical students manually measured the maximal kidney length and width in 132 ultrasound cines. The segmentation algorithm was then applied to the same cines, region fitting was performed, and the maximum kidney length and width were measured. Additionally, single kidney volume for 16 patients was estimated using either manual or automatic measurements.

Results: The experts resulted in length of [95% CI: 80.0, 89.6] and a width of [49.9, 53.7]. The algorithm resulted a length of [81.5, 91.1] and a width of [43.6, 50.6]. Experts, novices, and the algorithm did not statistically significant differ from one another (). Bland-Altman analysis showed the algorithm produced a mean difference of 2.6 mm (SD = 1.2) from experts, compared to novices who had a mean difference of 3.7 mm (SD = 2.9 mm). For volumes, mean absolute difference was 47 mL (31%) consistent with error in all three dimensions.

Conclusions: This pilot study demonstrates the feasibility of an automatic tool to measure kidney biometrics of length, width, and volume from standard 2D ultrasound views with comparable accuracy and reproducibility to expert sonographers. Such a tool may enhance workplace efficiency, assist novices, and aid in tracking disease progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10248852PMC
http://dx.doi.org/10.1117/1.JMI.10.3.034003DOI Listing

Publication Analysis

Top Keywords

length width
16
expert sonographers
12
kidney dimensions
8
dimensions two-dimensional
8
machine learning
8
kidney length
8
kidney
7
length
6
width
6
automatic measurement
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!